• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence du cholestérol sur la liaison membranaire de la protéine S100A10

Gendron-Bélanger, Kenrik 30 April 2024 (has links)
Ce mémoire de maîtrise se focalise sur l'influence du cholestérol sur l'interaction de la protéine S100A10 avec les membranes cellulaires, dans le contexte de la macropinocytose. Ce processus, essentiel à la survie cellulaire, permet l'ingestion de liquides extracellulaires et joue un rôle clé dans la régulation de fonctions cellulaires critiques telles que l'immunité, la migration cellulaire et la signalisation. Il est caractérisé par sa capacité à permettre aux cellules de s'adapter rapidement aux changements environnementaux en ingérant des nutriments et en répondant à des stimuli variés. Ce mémoire s'est concentré à décortiquer le rôle spécifique du cholestérol sur la liaison membranaire de la protéine S100A10. L'accent a, dans un premier temps, été mis sur l'optimisation de la surexpression et la purification de cette protéine, par le biais d'approches méthodologiques rigoureuses. Ces efforts ont permis de sonder en profondeur les interactions entre cette protéine et différents constituants des membranes cellulaires. La technique de la tensiométrie de surface a été particulièrement révélatrice, dévoilant l'influence significative de la présence et de la concentration du cholestérol sur la liaison de la S100A10 avec divers phospholipides membranaires. En complément, les isothermes de compression ont permis de dévoiler comment le cholestérol modifie la compressibilité et la stabilité des monocouches lipidiques. Ces données ont mis en évidence l'importance de l'architecture membranaire dans les mécanismes cellulaires impliquant la protéine S100A10. En somme, ce mémoire révèle que la modulation des interactions entre la S100A10 et les phospholipides par le cholestérol est un processus complexe, pouvant avoir des répercussions directes sur la macropinocytose. Les résultats de cette étude apportent une contribution significative à la compréhension des mécanismes régissant le comportement des membranes biologiques. / This master's thesis is centered on the influence of cholesterol on the interaction of the S100A10 protein with cellular membranes, in the context of macropinocytosis. This process, essential for cellular survival, allows the ingestion of extracellular fluids and plays a key role in regulating critical cellular functions such as immunity, cell migration, and signaling. It is characterized by its ability to allow cells to quickly adapt to environmental changes by ingesting nutrients and responding to various stimuli. This master's thesis focused on dissecting the specific role of the cholesterol in the membrane binding of the S100A10 protein. Initially, the priority was placed on optimizing the overexpression and purification of this protein, using rigorous methodological approaches. These efforts enabled an in-depth probing of the interactions between this protein and different constituents of cellular membranes. The technique of surface tensiometry was particularly revealing, uncovering the significant influence of the presence and concentration of cholesterol on the binding of S100A10 to various membrane phospholipids. Additionally, compression isotherms revealed how cholesterol modifies the compressibility and stability of lipid monolayers. These findings highlighted the importance of membrane architecture in cellular mechanisms involving the S100A10 protein. In summary, this thesis reveals that the modulation of interactions between S100A10 and phospholipids by cholesterol is a complex process, which can have direct repercussions on macropinocytosis. The results of this study make a significant contribution to understanding the mechanisms governing the behavior of biological membranes.
2

La liaison membranaire de la protéine S100A10 et du peptide d'AHNAK intervenant dans la réparation membranaire

Yan, Xiaolin 17 January 2024 (has links)
Les protéines appartenant à la famille S100 et les annexines interviennent lors de différents mécanismes membranaires vitaux. En effet, le complexe protéique S100A10-annexine A2 permettrait le recrutement d'une partie du C-terminal de la protéine AHNAK à la membrane en présence de calcium, avant de former une plateforme qui initierait la réparation membranaire. Cependant, aucune donnée moléculaire n'est à ce jour disponible sur la liaison membranaire de la S100A10 et du segment C-terminal d'AHNAK de ce complexe. Leur liaison membranaire doit donc être étudiée afin de mieux comprendre leurs rôles lors du processus de réparation membranaire. Afin de combler le manque de données sur le rendement et la quantité de S100A10 solubilisée et purifiée parmi la littérature existante, le protocole de surexpression et purification de la S100A10 a été optimisé dans un premier temps. La protéine a été identifiée par spectrométrie de masse et la stabilité de sa structure secondaire a été analysée par dichroïsme circulaire à différentes températures au cours du temps. La S100A10 obtenue est stable pendant au moins 60 jours à plusieurs températures, dont 20 °C, permettant d'effectuer des expériences biophysiques à température ambiante avec la protéine non-dénaturée. En parallèle, le segment peptidique C-terminal d'AHNAK (pAHNAK) a été synthétisé commercialement. L'étude par spectroscopie infrarouge de réflexion totale atténuée (ATR) montre que sa structure secondaire ne subit pas de changement majeur en présence et en absence de lipides. Deux modèles membranaires ont été choisis dans nos études. D'abord, celui des monocouches de Langmuir a été utilisé pour mimer les membranes cellulaires afin de caractériser l'interaction des protéines avec différents phospholipides composant les membranes. Les études de la liaison membranaire de ces protéines ont été effectuées avec ce modèle en le couplant avec la tensiométrie de surface. Ces travaux ont démontré que le pAHNAK interagissait plus fortement avec les lipides insaturés, en particulier les lipides monoinsaturés, qu'avec les lipides saturés. De plus, le pAHNAK interagit préférentiellement avec la tête polaire des phospholipides de type phosphatidylsérine (PS), qui sont chargées négativement, puis avec ceux de type phosphatidyléthanolamine (PE) et enfin avec ceux de type phosphatidylcholine (PC). Avec le même modèle, la profondeur d'insertion des protéines dans des monocouches lipidiques a été déterminée par ellipsométrie. Les expériences avec des phospholipides monoinsaturés démontrent que la profondeur d'insertion du pAHNAK suit la même tendance (PS˃PE˃PC). Le deuxième modèle employé est celui des bicouches lipidiques avec lequel l'affinité de ces protéines pour les têtes polaires des phospholipides a spécifiquement été évaluée par résonance magnétique nucléaire (RMN) du ³¹P à l'état solide. Ces études de RMN confirment la tendance de préférence du pAHNAK pour les différents types de phospholipide à 37 °C observée précédemment. La liaison membranaire de la S100A10 a ensuite été étudiée selon la même stratégie que pour le pAHNAK. Les résultats de la tensiométrie montrent que la S100A10 préfère interagir avec les phospholipides insaturés avec des têtes polaires PE ou PS, et surtout les phospholipides polyinsaturés contenant de longues chaînes acyles. Les expériences d'ellipsométrie suggèrent que la S100A10 suit l'ordre d'insertion PC > PE > PS, ce qui pourrait être expliqué par un changement d'orientation de la protéine. De plus, les résultats de RMN suggèrent qu'à 20 °C et à 37 °C, la S100A10 pourrait s'insérer partiellement dans la membrane près des têtes polaires PS. L'ensemble de nos travaux de recherche démontrent que, dans un environnement physiologique à 37 °C, le pAHNAK et la S100A10 peuvent probablement interagir avec des phospholipides monoinsaturés ayant une tête polaire chargée négativement. Cependant, le pAHNAK aura tendance à s'insérer dans les chaînes acyles alors que la S100A10 s'insérerait partiellement près des têtes polaires. Ce projet a ainsi permis de développer les connaissances sur la liaison membranaire de la protéine S100A10 et du pAHNAK et d'émettre de nouvelles hypothèses quant au rôle des PS dans la réparation membranaire. De plus, la poursuite de ces travaux mènera à l'identification potentielle des conditions conduisant à une modification de leur liaison membranaire, et éventuellement à une perte de fonction. Ainsi, les connaissances développées dans cette thèse permettent de mieux comprendre la liaison membranaire de la S100A10 et du C-terminal d'AHNAK afin de mieux déterminer leurs rôles dans la réparation membranaire, ainsi que dans les autres mécanismes physiologiques auxquels ces protéines participent. / Proteins belonging to S100 family proteins and annexins are involved in various vital membrane mechanisms. The S100A10-annexin A2 protein complex was postulated to recruit part of the C-terminal segment of the AHNAK protein to the membrane in the presence of calcium, before forming a platform which can initiate membrane repair. However, no molecular data is currently available on the membrane binding of S100A10 and of the C-terminal segment of AHNAK of this complex. Their membrane binding should therefore be studied in order to better understand their roles during the membrane repair process. In order to fill the lack of data on the yield and the quantity of purified and solubilized S100A10 in the existing literature, the protocol for the overexpression and purification of S100A10 was first optimized. The protein was identified by mass spectrometry and its secondary structure stability was analyzed by circular dichroism at different temperatures over time. The S100A10 obtained is stable for at least 60 days at several temperatures, including 20 °C, allowing to perform biophysical experiments at room temperature with a non-denatured protein. In parallel, the C-terminal peptide segment of AHNAK (pAHNAK) was commercially synthesized. Attenuated total reflection infrared spectroscopy (ATR) study shows that its secondary structure does not undergo major changes in the presence and absence of lipids. Two membrane models were chosen in our studies. First, the Langmuir monolayers model was used to mimic cell membranes in order to characterize the interaction of proteins with the different phospholipids found in membranes. Membrane binding studies of these proteins were carried out with this model by coupling it with surface tensiometry. This work demonstrated that pAHNAK interact more strongly with unsaturated lipids, in particular monounsaturated lipids, than with saturated lipids. In addition, pAHNAK preferentially interacts with the phosphatidylserine (PS) polar head group which is negatively charged, then with phosphatidylethanolamine (PE) and finally with phosphatidylcholine (PC). With the same model, the insertion depth of pAHNAK into lipid monolayers was determined by ellipsometry. Experiments with monounsaturated phospholipids demonstrate that the insertion depth of pAHNAK follows the same trend (PS˃PE˃PC). The second model membrane used is lipid bilayers with which the affinity of pAHNAK for phospholipid polar head groups has specifically been evaluated by solid state ³¹P nuclear magnetic resonance (NMR). These NMR studies confirm the previously observed preference trend of pAHNAK at 37 °C for the different polar head groups. The membrane binding of S100A10 was then studied according to the same strategy as pAHNAK. The results of the tensiometry show that S100A10 prefers to interact with unsaturated phospholipids bearing PE or PS polar head groups, and especially polyunsaturated ones containing long fatty acyl chains. Ellipsometric experiments suggest that S100A10 follows the order of insertion PC> PE> PS, which could be explained by a change in orientation of the protein. Moreover, NMR results suggest that, at 20 and 37 °C, S100A10 could partially insert into the membrane near the PS polar head group. All of our research demonstrates that, in a physiological environment of 37 °C, pAHNAK and S100A10 can probably interact with monounsaturated phospholipids containing a negatively charged polar head group. However, pAHNAK will tend to insert into the acyl chains while S100A10 would insert partially near the polar head group of phospholipids. This project has thus made it possible to develop knowledge on the membrane binding of the S100A10 protein and of pAHNAK as well as to provide new hypotheses regarding the role of PS in membrane repair. In addition, the continuation of this work will lead to potentially identify the conditions leading to a modification of the membrane binding of these proteins, and possibly to a loss of function. Thus, the knowledge developed in this thesis allows to improve our understanding of the membrane binding of S100A10 as well as of the C-terminal segment of AHNAK in order to better determine their roles in membrane repair, as well as in other physiological mechanisms in which these proteins are involved.
3

Électro-activation de solutions aqueuses de lactate et ascorbate de calcium et étude de leurs effets antibactériens sur les cellules végétatives et spores de Bacillus cereus ATCC 14579

Cayemitte, Pierre Emerson 27 January 2024 (has links)
Depuis la vulgarisation de certains concepts comme la globalisation ou la mondialisation, le secteur agroalimentaire a connu une expansion fulgurante et un engouement incessant pour la commercialisation d’aliments entre les peuples à travers le monde. Ce phénomène, contribuant significativement à l’accroissement économique des marchés, n’est toutefois pas sans risque. Pendant ce temps, les dangers de sources microbiologiques, notamment les pathogènes, sont véhiculés par des matrices alimentaires et voyagent d’un pays à l’autre, ce qui augmente le risque de contamination pour les consommateurs. Conséquemment, on assiste à une augmentation des cas d’allergies alimentaires, d’intoxications ou de toxi-infections alimentaires dont les agents étiologiques peuvent venir des quatre coins du monde. À cet effet, les organismes réglementaires comme l’Agence canadienne d’inspection des aliments (ACIA), Santé Canada, la Food and Drug Administration (USFDA) américaine ou d’autres autorités internationales compétentes comme l’Organisation des Nations unies pour l’alimentation et l’agriculture(FAO) et l’Organisation mondiale de la santé (OMS) multiplient leurs efforts afin de mettre en place des normes et politiques réglementaires pour aider l’industrie agroalimentaire à renforcer les contrôles depuis la fabrication jusqu’à la commercialisation des aliments. Les dangers microbiologiques venant de pathogènes comme Bacillus cereus demeurent un risque de santé publique majeur qu’il faut maîtriser afin d’assurer la protection des consommateurs. Bien que de nombreuses techniques de contrôle (e.g., additifs alimentaires, haute pression hydrostatique, rayonnements ionisants, procédés thermiques, etc.) ont été développées et utilisées pour assurer la salubrité et l’innocuité des aliments, dans certains cas cela n’a pas permis de produire des aliments totalement exempts de bactéries responsables de la dégradation/altération des aliments et de pathogènes causant des intoxications alimentaires comme c’est le cas avec B. cereus. En effet, cette bactérie pathogène est ubiquitaire, aérobie et anaérobie facultative. Elle est capable de produire dans une grande variété d’aliments et d’ingrédients comme les épices des spores très résistantes ainsi que différents types de toxines pouvant causer la diarrhée, la nausée, le vomissement et même la mort. Dans cette optique, et vue la grande difficulté à maitriser la contamination des aliments causée par ce pathogène, l’objectif général de cette recherche a été d’utiliser la technologie d’électro-activation, une branche appliquée de l’électrochimie qui s’intéresse notamment à la réactivité des solutions aqueuses, comme méthode alternative et potentiellement efficace pour lutter contre B. cereus afin de produire des aliments plus sécuritaires avec une grande valeur nutritionnelle et organoleptique. Pour y parvenir, des solutions aqueuses de sels d’acides organiques de lactate de calcium, d’ascorbate de calcium et de leur mélange équimolaire ont été électro-activées dans un réacteur soumis à un courant électrique continu avec des intensités de l’ordre de 250, 500 et 750 mA pendant un maximum de temps de 30 minutes afin de produire les acides organiques conjugués respectifs; de l’acide lactique et de l’acide ascorbique. Dans la première partie de ce travail de recherche, les caractéristiques physicochimiques (e.g., pH, acidité titrable, pKa) des solutions électro-activées (SÉA) ont été étudiées et leurs profils moléculaires comparés à ceux d’acides standards respectifs en utilisant différentes techniques (e.g., FTIR, HPLC, DSC, DPPH), ce qui a permis de confirmer la production d’acides organiques conjugués respectifs des sels utilisés. Ces SÉA avaient un pH très bas, une acidité titrable élevée, notamment pour l’ascorbate de calcium et le mélange. En plus, une activité antioxydante élevée a été observée pour la solution électro-activée d’ascorbate de calcium et du mélange. Dans la deuxième partie de l’étude, les SÉA traitées à 250, 500 et 750 mA pendant 10, 20 et 30 min ont été retenues pour être mises en contact avec des cellules végétatives de Bacillus cereus ATCC 14579 en conditions modèles (contact direct) afin d’évaluer leurs effets antimicrobiens sur ce pathogène. Les cellules ont été testées en contact direct avec les SÉA pendant 5, 30 et 60 secondes. Le même traitement a été également réalisé par contact direct avec des acides organiques standards (lactique, ascorbique) pendant 5, 30, 60, et 120 secondes afin de faire des comparaisons. Les SÉA et les acides organiques standards correspondants avaient les mêmes valeurs d’acidité titrable. Par la suite, les cellules ont été observées au microscope (coloration au bleu de méthylène et fluorescence) afin d’évaluer les effets inhibiteurs/destructeurs de ces solutions. Également, les SÉA ont été diluées avec de l’eau distillée pour obtenir des solutions possédant 10 à 90% de l’acidité titrable (force) initiale pour être ensuite testées contre les cellules de B. cereus. Les résultats ont démontré que toutes les SÉA avaient une grande efficacité contre les cellules végétatives de B. cereus. Également, même à des taux de dilution représentant en moyenne 20% de la force initiale des SÉA, l’effet antimicrobien était très élevé pour les différentes solutions. L’observation de B. cereus au microscope a permis de confirmer les effets létaux des SÉA. Dans ce volet avec des cellules végétatives de B. cereus, l’efficacité des SÉA a été estimée à une réduction de 4–7 log UFC/mL. En plus, il a été démontré que le pouvoir antibactérien des SÉA était nettement plus élevé que celui des acides lactiques et ascorbiques standards (conventionnels). Dans la troisième partie de cette étude, des solutions électro-activées de lactate de calcium, d’ascorbate de calcium et de leur mélange équimolaire à 750 mA pendant 30 minutes ont été retenues et utilisées contre des spores de Bacillus cereus ATCC 14579 en conditions modèles et dans du saumon Atlantique frais. Les spores traitées ont été analysées à l’aide de microscopes électroniques à balayage et à transmission pour évaluer les effets sporicides des SÉA. Les résultats obtenus ont clairement montré un grand pouvoir sporicide des SÉA utilisées sur les spores de B. cereus avec une réduction de 7 à 9 log en utilisant une population initiale de spores de 10⁹ UFC/mL, dépendamment des conditions évaluées; à savoir : en contact direct (2–30 min), dans du saumon utilisé comme matrice alimentaire(2–7 min), ainsi qu’en combinaison avec de la chaleur modérée de 60, 70, 80 et 90 °C pendant 0.5–2 min. Également, il a été observé que la capacité sporicide des SÉA augmentait avec la température et le temps de contact. La microscopie électronique à balayage et à transmission a permis de constater que les SÉA pouvaient provoquer la destruction totale des cellules de B. cereus, et notamment la perforation de la membrane (cortex et manteau), ainsi que le reflux de différentes composantes de la structure des spores de B. cereus. Tenant compte des résultats obtenus dans cette étude, nous pouvons conclure que les solutions électro-activées à base de lactate de calcium, ascorbate de calcium et leur mélange, notamment celles électro-activées à 750 mA–30 min, pourraient être d’une grande contribution afin de renforcer la capacité de l’industrie alimentaire à lutter contre B. cereus ATCC 14579 et de produire des aliments plus sécuritaires pour le consommateur. / Since the popularization of concepts like globalization, the agri-food sector has experienced a huge expansion and a ceaseless craze for the marketing of food between the peoples worldwide. This phenomenon, contributing significantly to the economic growth of the markets, is not without risk, however. Meanwhile, microbiological hazards, including pathogens, are carried through food matrices and travel from one country to another, increasing the risk of contamination for consumers. Consequently, we are also witnessing an increase in cases of food allergies, foodborne illnesses and outbreaks, with etiological agents coming from all over the world. Thus, regulatory organisms such as Canadian Food Inspection Agency (CFIA), Health Canada, United States Food and Drug Administration (USFDA) or competent international authorities like Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) are stepping up efforts to put in place regulatory standards and policies in order to help the food industry to strengthen controls from the processing to the marketing of foods. Microbiological hazards from pathogens like Bacillus cereus remain a major public health risk that must be controlled in order to ensure consumers protection. Although many techniques of control (e.g., food additives, high hydrostatic pressure, ionizing radiation, thermal processes, etc.) have been developed and used to ensure the safety and security of foods, in some instance this has not allowed to produce food products that are completely free of bacteria responsible for degradation/spoilage of food and pathogens causing food poisoning as is the case with B. cereus. Indeed, this pathogenic bacterium is ubiquitous, aerobic and facultative anaerobic. It is able to produce, in a wide variety of foods and ingredients such as spices, highly resistant spores as well as different types of toxins that can cause diarrhea, nausea, vomiting, and even death. In this context, and given the great difficulty in controlling the contamination of food caused by this pathogen, the general objective of this research was to use the electro-activation technology, an applied branch of electrochemistry which is particularly interested in the reactivity of aqueous solutions, as an alternative and potentially effective method to fight against B. cereus in order to produce safer foods with high nutritional and organoleptic values. To achieve this, aqueous solutions of organic acid salts of calcium lactate, calcium ascorbate and their equimolar mixture were electroactivated in a reactor subjected to a direct electric current with intensities of 250, 500 and 750 mA for a maximum time of 30 minutes in a bid to produce the respective conjugated organic acids, lactic acid and ascorbic acid. In the first part of this research work, the physicochemical characteristics (e.g.,pH, titratable acidity, pKa) of the electro-activated solutions (EAS) were studied and their molecular profiles compared to those of respective standard acids using different techniques (e.g., FTIR, HPLC, DSC, DPPH), which helped to confirm the production of conjugated organic acids from the respective salts used. These EAS had a very low pH, a high titratable acidity, particularly for the calcium ascorbate and the mixture. In addition, a high antioxidant activity was observed for the electro-activated calcium ascorbate solution and the mixture. In the second part of the study, the EAS treated at 250, 500 and 750 mA for 10,20 and 30 min were selected to be brought into contact with vegetative cells of Bacilluscereus ATCC 14579 under model conditions (direct contact) in order to evaluate their antimicrobial effects on this pathogen. The cells were tested in direct contact with the EAS for 5, 30 and 60 seconds. The same treatment was also carried out by direct contact with standard organic acids (lactic, ascorbic) for 5, 30, 60, and 120 seconds in order to make comparisons. The EAS and the corresponding standard organic acids had the same titratable acidity values. There after, the cells were observed under microscope (Methylene blue and fluorescence) to evaluate the inhibitory / destructive effects of these solutions. Also, the EAS were diluted with distilled water to obtain solutions with 10 to 90% of the initial titratable acidity (strength) to be tested against B. cereus cells. The results demonstrated that all the EAS made were highly effective against the vegetative cells of B.cereus. Also, even at dilution rates averaging 20% of the EAS initial strength, the antimicrobial effect was very high for the different solutions. In addition, the microscopic observation of B. cereus has confirmed the lethal effects of EAS. In this part with the vegetative B. cereus cells, the efficacy of the EAS was estimated to a reduction of 4–7 log CFU/mL. In addition, the antibacterial power of the EAS has been shown to be significantly higher than that of the standard (conventional) lactic and ascorbic acids. In the third part of the study, electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture at 750 mA for 30 min were selected and used against the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh Atlantic salmon. The treated spores were analyzed using scanning and transmission electron microscopes to evaluate the sporicidal effects of EAS. The results obtained clearly showed a great sporicidal power of the EAS used on B. cereus spores with a reduction of 7 to 9 log using an initial spore population of 10⁹ CFU/mL, depending on the conditions assessed; namely: in direct contact (2–30 min), in salmon used as a food matrix (2–7 min), as well as in combination with moderate heat of 60, 70, 80 and 90 ℃ for 0.5–2 min. Also, it was observed that the sporicidal capacity of the EAS increased with temperature and contact time. Scanning and transmission electron microscopy showed that the EAS could cause the total destruction of B. cereus cells, including perforation of the membranes (cortex and coat), as well as the reflux of different components of the structure of B. cereus spores. Taking into account the results obtained in this study, we can conclude that the electro-activated solutions made with calcium lactate, calcium ascorbate and their mixture, especially those electro-activated at 750 mA–30 min, could be of a great contribution to reinforce the capacity of the food industry to control B. cereus ATCC 14579 and produces safer foods for the consumer.
4

Simulations Monte Carlo et caractérisations d'un microplasma d'air induisant la poration de membranes cellulaires pour la transfection de gènes / Monte Carlo simulations and experimental characterizations of air microplasma inducing poration of cell membranes for gene transfection

Zerrouki, Amel 29 August 2016 (has links)
La transfection est le processus de transfert de gènes (ADN) dans des cellules. L'utilisation des plasmas froids à la pression atmosphérique est un excellent vecteur pour la transfection de gènes. Cela peut conduire à une perméabilisation temporaire de la membrane cellulaire permettant ainsi le processus de transfection de gènes, dans lequel l'ADN et les cellules sont exposées aux flux des espèces actives du plasma (électrons, ions et radicaux neutres). Cependant beaucoup de questions restent sans réponse notamment sur les mécanismes de transfection par plasma, en particulier de formation de pores et de perméabilisation de la membrane par interactions avec les espèces actives du plasma. Ainsi, nous avons développé un modèle Monte Carlo simulant la formation de pores de quelques nm de largeur sous l'effet d'un microplasma d'air. Ce model nécessite a priori des données d'entrées sur la densité des espèces chargées et la température du gaz et des électrons. C'est pourquoi nous avons aussi effectué une caractérisation expérimentale par spectroscopie d'émission optique OES de la micro décharge couronne. On a estimé les températures rotationnelles de plusieurs espèces variant entre (700K-2350K) même si dans nos conditions de plasma hors équilibre la température du gaz demeure ~300K. Les variations spatiales de la température vibrationnelle Tvib et des électrons Te le long de l'espace inter-électrode (de la pointe vers l'électrode de masse) ont aussi été estimées (Tvib:3000K-6500K et Te:6.75 eV-3.4eV). Les densités des ions et des électrons ont été déterminées et valent environ 1015 cm-3. Par ailleurs, sachant qu'il n'existe dans la littérature aucune modélisation consacrée à la perméabilisation de la membrane et la formation de pore par interactions avec les espèces actives du plasma, nous avons développé pour la première fois dans la littérature un modèle spécifique de simulation Monte Carlo pour la poration. Chaque espèce du plasma (électrons, ions, neutres radicaux) est considérée comme une macro-espèce (ou super-particule) représentant un grand nombre de particules. La proportion des espèces du plasma arrivant sur la membrane est estimée à partir de leurs flux, calculés à l'aide d'un modèle de cinétique réactionnelle et par mesures spectroscopiques. La membrane est supposée comme une simple structure multicouche de phospholipides et protéines. Les interactions avec les couches membranaires sont considérées comme étant des super-processus (recombinaison, réflexion, activation, ouverture). Une probabilité d'occurrence de chacun de ces super-processus est assignée à chaque super-particule sur la base d'une étude paramétrique. Le but est d'évaluer les effets des paramètres de simulation initiaux ainsi que l'effet des probabilités d'occurrence de chaque processus sur la formation de pores. Plusieurs résultats importants ont été obtenus. Les électrons jouent un rôle principal sur l'activation et l'ouverture des sites dus à leur forte anisotropie dans la direction avant. Malgré les faibles énergies, proche de celle du gaz, des ions et des radicaux, leur processus de réflexion est déterminant pour élargir et approfondir les dimensions des pores. Il a été montré que le nombre initial de particules NP est le paramètre qui contrôle le plus efficacement la formation de pores. De plus, nous avons observé une corrélation directe entre NP et la durée d'exposition de la membrane cellulaire au plasma. Dans les conditions actuelles de simulation, on a obtenu une dynamique de formation de pores avec des dimensions (diamètres~10nm) compatibles pour la transfection de gènes. Les résultats de simulation Monte Carlo ont été qualitativement validés par une comparaison préliminaire avec les mesures des taux de transfection d'ADN et de survie de cellules fibroblaste de souries. La méthode de Monte Carlo développée dans ce travail représente un outil très prometteur pour une meilleure compréhension des mécanismes de transfection de gènes par plasma. / Gene transfection is a technique of deliberately introducing DNA into cells through the membrane. The cold atmospheric plasma CAP is potentially a new alternative, safe and damage-free technique. It can lead to a transient permeabilization of the cell membrane allowing processes of gene transfection in which DNA and cells are both exposed to fluxes of active plasma species (electrons, ions, and neutral radicals). The mechanisms of more particularly membrane poration are far to be clear and controlled. Therefore, the aim of this thesis is to numerically study the mechanisms of plasma-induced membrane permeabilization using a specific micro-air plasma. More precisely, is to develop and exploit a specific Monte Carlo poration model. This model is aimed to simulate the pore formation of few nm of width through cell membranes when irradiated by micro-air plasma. This developed model requires a prior input data on the density of charged particles and the temperature of gas and electrons. Thus, an experimental characterisation by OES of the micro-air corona discharge is performed. Rotation temperature was determined (between 700K to 2350K) even though under our non-equilibrium conditions Tg remains ~300K. OES also has given the space variation from the high voltage tip to the grounded plate of vibration temperatures (between 3000K up to about 6500K) and Te (about 6.75 eV down to 3.4 eV near the plate). A magnitude around 1015cm-3 for the electron and ion densities have been also determined. Moreover, knowing that there are no literature simulations devoted to membrane permeabilization and pore formation when impacted by plasma actives species, we developed for the first time in literature a specific Monte Carlo poration model. In this framework, we assumed each plasma species (electrons, ions, and neutral radicals) as a super-particle grouping a large number of particles. The species fluxes were estimated from a plasma reaction kinetic model and OES study. The membrane layers were assumed as a simple membrane model superposing four layers of phospholipids and proteins. Each layer was constituted by a succession of super-sites subjected to specific super-processes (recombination, reflection, activation of a site, opening, etc). For an accurate exploitation of our model, the estimation of the probability of occurrence of the whole considered super-processes is absolutely necessary. Thus, a large parametric study is conducted. The aim is to evaluate the effects of the initial simulation parameters as well as the magnitude of the occurrence probabilities of each reaction process on pore formation.
5

Perturbation de la membrane cellulaire par des composés cationiques : transport transmembranaire contrôlé et applications biologiques

Gravel, Julien 08 1900 (has links)
No description available.

Page generated in 0.0679 seconds