• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesure adaptative non destructive du nombre de photons dans une cavité

Peaudecerf, Bruno 30 September 2013 (has links) (PDF)
Une mesure adaptative vise à optimiser l'acquisition d'information sur un système à l'aide d'une boucle de rétroaction sur l'appareil de mesure. Dans notre dispositif d'électrodynamique en cavité, nous avons réalisé une mesure adaptative sur un système quantique, le champ micro-onde piégé dans une cavité supraconductrice de très grande finesse. Des atomes de Rydberg circulaires, interagissant dispersivement avec le champ, réalisent une série de mesures dites "faibles", aboutissant à la mesure quantique non destructive du nombre de photons dans le mode. La prise en compte des résultats des mesures successives, de l'action en retour sur le système, et de l'ensemble des imperfections expérimentales, permet à un ordinateur de contrôle d'effectuer une estimation en temps réel de l'état du champ. La phase de l'interféromètre de Ramsey qui définit la mesure réalisée sur les atomes est alors optimisée afin d'extraire un maximum d'information des détections ultérieures. Nous montrons que préparation d'états de Fock est nettement accélérée avec la méthode adaptative, par rapport à un protocole passif utilisant une alternance prédéfinie des phases de mesure. Cette réduction du temps de mesure est d'un grand intérêt en présence de décohérence, et pourrait par exemple être exploitée dans des protocoles de rétroaction quantique existants, où la rapidité de l'estimation d'état est cruciale.
2

Mesure quantique non destructive répétée de la lunière: états de Fock et trajectoires quantiques

Guerlin, Christine 14 December 2007 (has links) (PDF)
Les postulats de la mesure, définissant une mesure Quantique Non Destructive (QND), précisent que la perturbation minimale sur un objet mesuré est une projection de son état. Les appareils de mesure habituellement utilisés se situent largement au-delà de cette limite minimale. Les photodétecteurs usuels en particulier absorbent, donc détruisent, les photons qu'ils détectent. Dans notre expérience d'électrodynamique quantique en cavité, des atomes de Rydberg circulaires et des photons micro-onde confinés dans une cavité supraconductrice interagissent dans le régime de couplage fort. A l'issue de l'interaction les deux systèmes sont intriqués: chacun d'eux emporte une information sur l'autre. Dans le cas désaccordé, l'effet de l'interaction est un simple déplacement d'énergie des niveaux atomiques, résultant en un déphasage du dipôle proportionnel au nombre de photons, mesurable par interférométrie de Ramsey. Les atomes délivrent donc une information sur le nombre de photons présents dans le champ sans l'avoir modifié. Selon ce principe, nous avons pu grâce au long temps de vie de notre cavité réaliser une mesure QND répétée du nombre de photons. L'évolution du nombre de photons en présence de relaxation révèle alors des sauts brusques, appelés sauts quantiques. Notre expérience a permis la première observation de ce comportement pour la lumière. En décrivant à l'aide de la loi de Bayes l'information délivrée par chaque détection atomique, nous avons pu suivre la projection progressive d'un état cohérent vers des états de Fock contenant jusqu'à sept photons. L'analyse statistique de nos résultats fournit une très claire illustration des postulats de la mesure quantique.
3

Mesures QND en electrodynamique quantique en cavite : production et decoherence d'etats de Fock ; effet Zenon quantique

Bernu, Julien 23 September 2008 (has links) (PDF)
Nous avons realise une mesure Quantiques Non Destructives du nombre de photons d'un champ piege dans une cavite de temps d'amortissement T=0,13s. Nous envoyons des atomes de Rydberg circulaires a travers la cavite ou une interaction dispersive deplace leur frequence propre proportionnellement au nombre de photons. Ce deplacement lumineux est detecte par interferometrie atomique de Ramsey. Le temps d'amortissement du champ est suffisamment long pour permettre d'observer les sauts quantiques du nombre de photons dus a la relaxation. L'analyse statistique des differentes trajectoires permet de realiser une tomographie partielle de ce processus responsable de la decoherence des etats de Fock |n> en un temps T/n. La projection d'un champ initialement coherent sur un etat de Fock lors de la mesure s'accompagne d'une dispersion totale de sa phase. Cette action en retour est utilisee pour geler la croissance coherente du champ par effet Zenon quantique.
4

Etude des effets de pression de radiation et des limites quantiques du couplage optomécanique

Verlot, P. 24 September 2010 (has links) (PDF)
En mécanique quantique, toute mesure est responsable d'une action en retour sur le système mesuré, qui limite en général la sensibilité de la mesure. Il en est ainsi dans les mesures interférométriques, où les miroirs de l'interféromètre sont susceptibles de se déplacer sous l'effet de la pression de radiation exercée par la lumière. Nous présentons une expérience visant à mettre en évidence ces limites, basée sur la détection ultra-sensible des déplacements d'un miroir mobile inséré dans une cavité Fabry-Perot de très grande finesse. Grâce aux améliorations que nous avons apportées à ce dispositif, nous avons observé des corrélations entre un bruit classique d'intensité et la phase de faisceaux lumineux, induites par couplage optomécanique avec le miroir mobile. Nous décrivons les conditions expérimentales nécessaires pour prolonger ces expériences au niveau quantique, afin d'observer les corrélations optomécaniques produites par les fluctuations quantiques de la pression de radiation, mais aussi pour réaliser une mesure quantique non destructive de la lumière par des moyens purement mécaniques. Nous présentons également plusieurs conséquences de la pression de radiation que notre montage nous a permis de mettre en évidence : annulation de l'action en retour dans les mesures de longueur ou de force, refroidissement laser du miroir dans une cavité désaccordée, et enfin un effet dynamique de l'action en retour qui conduit à l'amplification d'un signal par la mise en mouvement du miroir. Cet effet, prédit dans le cadre de la détection interférométrique des ondes gravitationnelles, devrait permettre d'améliorer la sensibilité au-delà de la limite quantique standard, qui devrait être atteinte dans les antennes gravitationnelles de seconde génération.
5

Détection non destructive d'un atome unique par interaction dispersive avec un champ mésoscopique dans une cavité

Maioli, Paolo 09 July 2004 (has links) (PDF)
La détection des états d'un qubit est un élément essentiel dans la réalisation d'expériences d'information quantique. Dans le système étudié, le bit quantique est codé dans les états d'énergie interne d'un atome de Rydberg circulaire à deux niveaux. Dans ce mémoire nous présentons une nouvelle technique de détection des atomes de Rydberg circulaires basée sur l'interaction dispersive d'un atome avec un champ micro-onde mésoscopique à l'intérieur d'une cavité supraconductrice de très grand facteur de qualité. L'indice de réfraction de l'atome, dépendant de son niveau d'énergie interne, déphase le champ micro-onde, et une procédure de détection homodyne transforme l'information codée dans la phase du champ en une information d'intensité. L'intensité finale du champ est lue par un échantillon mésoscopique d'atomes. Il s'agit d'une technique de détection non destructive, puisque le processus de détection n'ionise pas l'atome, mais le projette simplement dans l'état mesuré. De plus, le processus de détection intrique l'état interne d'un atome au niveau d'excitation d'un ensemble de plusieurs atomes, permettant de créer des superpositions cohérentes d'états atomiques mésoscopiques et ouvrant de nouvelles perspectives pour des tests de décohérence Nous présentons le principe de la technique et de nombreux résultats expérimentaux, ainsi que de possibles schémas d'application.
6

Détection sans destruction d'un seul photon. Une expérience d'électrodynamique quantique en cavité.

Nogues, Gilles 15 December 1999 (has links) (PDF)
Les mesures habituelles en optique détruisent les photons<br />incidents pour convertir leur énergie en un signal détectable.<br />Cette destruction n'est cependant pas imposée par les lois<br />quantiques fondamentales et des stratégies de mesure quantique<br />non-destructive ont été proposées qui permettent la mesure répétée<br />de champs électromagnétiques. Nous présentons la détection sans<br />absorption d'un seul photon stocké dans une cavité micro-onde<br />supraconductrice. Nous utilisons à cette fin des atomes de Rydberg<br />circulaires, très fortement couplés au champ. Durant son<br />interaction avec le mode de la cavité, un atome est capable<br />d'absorber un photon puis de le réémettre. Il s'agit des<br />oscillations de Rabi quantiques. À la fin de ce cycle<br />absorption--émission, le photon est encore présent dans la cavité<br />mais le système atome--champ a gardé une trace de son évolution<br />dans la phase de sa fonction d'onde qui a tourné de 180°. Nous<br />détectons ce déphasage grâce à un dispositif d'interférométrie<br />atomique. Un ensemble d'expériences permet de prouver les<br />corrélations entre l'atome et l'état du champ et le caractère<br />non-destructif de la mesure. Une analyse précise des performances<br />du dispositif et de ses applications possibles pour l'optique<br />quantique est menée.
7

Piégeage et mesure non-destructive d'atomes froids dans une cavité en anneau de haute finesse

Bernon, Simon 15 April 2011 (has links) (PDF)
Cette thèse s'intéresse à la génération d'états atomiques compressés par la mesure. La mesure considérée est de type quantique non-destructive, et profite de la surtension d'un résonateur optique de grande finesse. L'interférométrie atomique a démontré des performances inégalées pour la mesure de rotations, d'accélérations et du temps. Mais la sensibilité de ces appareils est aujourd'hui limitée par le bruit de grenaille, qui ne pourra être dépassé que par l'utilisation d'états non-classiques. Dans ce contexte, nous avons développé un appareil contenant une cavité optique de haute-finesse résonante à 1560 nm et à 780 nm. La lumière laser à 1560 nm qui est injectée dans la cavité génère un piège dipolaire où des atomes de Rb 87 sont chargés à partir d'un piège magnéto-optique. Le temps de vie de ces atomes dans le piège dipolaire est limité par les collisions avec le gaz résiduel, ce qui donne bon espoir pour l'implémentation d'une évaporation. Les concepts de mesure QND sont ensuite mis en place et un formalisme de fonction d'onde décrivant la dynamique de compression d'états est discuté et appliqué à des situations concrètes. Expérimentalement, cette mesure non-destructive réalisée à 780 nm a été implémentée grâce à une technique de modulation de fréquence particulièrement insensible aux bruits classiques. L'influence de cette sonde sur le système a été quantifiée en simple passage et cet outil a permis de suivre en temps réel l'état d'un interféromètre atomique. En outre, nous avons réalisé un laser Raman de faible largeur de raie. Ce laser qui utilise les atomes froids comme milieu à gain serait particulièrement adapté pour réaliser des mesures spectroscopiques de précision.

Page generated in 0.0866 seconds