• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bulk liquid-metal irradiation system

Gelbart, W. 19 May 2015 (has links) (PDF)
Introduction Low melting point metals are often encapsulated in a hermetic container, irradiated and the container transferred to hot-cell for material removal and processing. An important process of this kind is the production of 82Sr from rubidium (melting point: 39.5 °C.) This new concept departures completely form the encapsulated targets approach and allows an almost continues production by the irradiation of the bulk metal. As well, eliminated is the target transfer. By placing the target material dissolution chamber right in the target station, only the dissolution product is pumped to the hotcell for further processing. Material and Methods Some of the disadvantages of the encapsulated target are: 1. Complicated transfer system that is ex-pensive to install, slow and prone to failures. 2. Complex and expensive encapsulation procedure. 3. Loss of production time during the lengthy target changing. 4. Capsule geometry is constrained by the encapsulating process and transfer demands compromising heat transfer and beam power. To avoid the difficulties of liquid metal handling, metal salts are often used instead (rubidium chloride is one example). This creates other problems and limits the beam currents and production yields. In the system described, the liquid metal is transferred (by gravity) from a bulk container to an irradiation chamber. The chamber, made out of nickel-plated silver, holds the correct quantity of rubidium for one irradiation run. Because of the geometry of the chamber and the efficient cooling, up to 40KW of beam power can be delivered to the target. The chamber is equipped with thermocouples and a liquid-metal level detector and is entirely of welded/brazed construction. The alloy foil that forms the beam window is electron-beam welded to the chamber front ring. At the end of irradiation the irradiated liquid metal is gravity fed into a reaction chamber situ-ated below the irradiation chamber, and a new load of fresh rubidium released into the irradia-tion chamber. The liquid-metal transfer and the irradiation components are shown on FIG. 1, and the sectional view on FIG. 2. Appropriate chemicals (n-butanol in the case of rubidium) are delivered to the reaction chamber and the irradiated metal dissolved. The liquid dissolution product is transferred back to the hotcell. Since all steps of the reaction involve liquids, only small diameter tubes connect the target station with the hotcell. The transfer is fast and simple. The bulk liquid-metal storage container can be constructed to hold enough material for 10 or more runs. When empty, it is replaced with a pre-loaded one. The container is connected to the target system with one coupling and the exchange takes a short time. A robotic bottle exchange can be implemented if desired. The station is equipped with its own vacuum system, beam diagnostic (consisting of a four-sector mask) and a collimation. The target chamber and each of the beam intercepting components are electrically insulated to allow beam current monitoring. Constructed entirely out of metal and ceramic the target core assembly does not suffer from radiation damage. The use of aluminum, silver and alumina reduce component activation. Results and Conclusion A large part of the station design is based on the well proven construction of high current solid target system and is using the same, or similar components. Test was performed to optimize the liquid-metal transfer and the chamber filling with the correct volume, while leaving some room for expansion. A process for niobium coating of sliver is investi-gated. Niobium is known to provide good corro-sion resistance against liquid metals. Thermal modelling of the target and flow analysis of the cooling geometry is under way.
2

Rubidium metal target development for large scale 82Sr production

Nortier, F. M., Bach, H. T., Birnbaum, E. R., Engle, J. W., Fassbender, M. E., Hunter, J. F., John, K. D., Marr-Lyon, M., Moddrell, C., Moore, E. W., Olivas, E. R., Quintana, M. E., Seitz, D. N., Taylor, W. A. 19 May 2015 (has links) (PDF)
Strontium-82 (t1/2 = 25.5 d) is one of the medical isotopes produced on a large scale at the Isotope Production Facility (IPF) of the Los Alamos National Laboratory (LANL), employing a high intensity 100 MeV proton beam and RbCl targets. A constant increase in the 82Sr demand over the last decade combined with an established thermal limit of molten RbCl salt targets [1,2] has challenged the IPF’s world leading production capacity in recent years and necessitated the consideration of low-melting point (39.3 °C) Rb metal targets. Metal targets are used at other facilities [3–5] and offer obvious production rate advantages due to a higher relative density of Rb target atoms and a higher expected thermal performance of molten metal. One major disadvantage is the known violent reaction of molten Rb with cooling water and the potential for facility damage following a catastrophic target failure. This represents a significant risk, given the high beam intensities used routinely at IPF. In order to assess this risk, a target failure experiment was conducted at the LANL firing site using a mockup target station. Subsequent fabrication, irradiation and processing of two prototype targets showed a target thermal performance consistent with thermal modeling predictions and yields in agreement with predictions based on IAEA recommended cross sections [6]. Target failure test: The target failure test bed (FIG. 1) was constructed to represent a near replica of the IPF target station, incorporating its most important features. One of the most vulnerable components in the assembly is the Inconel beam window (FIG. 2) which forms the only barrier between the target cooling water and the beam line vacuum. The test bed also mimicked relevant IPF operational parameters seeking to simulate the target environment during irradiation, such as typical cooling water flow velocities around the target surfaces. While the aggressive thermal effects of the beam heating could not be simulated directly, heated cooling water (45 °C) ensured that the rubidium target material remained molten during the failure test. A worst case catastrophic target failure event was initiated by uncovering an oversized predrilled pinhole (1 mm Φ) to abruptly expose the molten target material to fast flowing cooling water. Prototype target irradiations: Two prototype Rb metal target containers were fabricated by machining Inconel 625 parts and by EB welding. The target containers were filled with molten Rb metal under an inert argon atmosphere. Follow-ing appropriate QA inspections, the prototype targets were irradiated in the medium energy slot of a standard IPF target stack using beam currents up to 230 µA. After irradiation the targets were transported to the LANL hot cell facili-ty for processing and for 82Sr yield verification. During the target failure test, cooling water conductivity and pressure excursions in the target chamber were continuously monitored and recorded at a rate of 1 kHz. Video footage taken of the beam window and the pinhole area combined with the recorded data indicated an aggressive reaction between the Rb metal and the cooling water, but did not reveal a violent explosion that could seriously damage the beam window. These observations, together with thermal model predictions, provided the necessary confidence to fabricate and fill prototype targets for irradiation at production-scale beam currents. X-ray imaging of filled targets (FIG. 3) shows a need for tighter control over the target fill level. One prototype target was first subjected to lower intensity (< 150 µA) beams before the second was irradiated at production level (230 µA) beams. During irradiation, monitoring of cooling water conductivity indicated no container breach or leak and, as anticipated given the model predictions, the post irradiation target inspection showed no sign of imminent thermal failure (see FIG. 4). Subsequent chemical processing of the targets followed an established procedure that was slightly modified to accommodate the larger target mass. TABLE 1 shows that post chemistry 82Sr yields agree to within 2 % of the in-target production rates expected on the basis of IAEA recommended cross sections. The table also compares 82Sr yields from the Rb metal targets against yields routinely obtained from RbCl targets, showing an increase in yield of almost 50 %.
3

Rubidium metal target development for large scale 82Sr production: LA-UR-14-22338

Nortier, F. M., Bach, H. T., Birnbaum, E. R., Engle, J. W., Fassbender, M. E., Hunter, J. F., John, K. D., Marr-Lyon, M., Moddrell, C., Moore, E. W., Olivas, E. R., Quintana, M. E., Seitz, D. N., Taylor, W. A. January 2015 (has links)
Strontium-82 (t1/2 = 25.5 d) is one of the medical isotopes produced on a large scale at the Isotope Production Facility (IPF) of the Los Alamos National Laboratory (LANL), employing a high intensity 100 MeV proton beam and RbCl targets. A constant increase in the 82Sr demand over the last decade combined with an established thermal limit of molten RbCl salt targets [1,2] has challenged the IPF’s world leading production capacity in recent years and necessitated the consideration of low-melting point (39.3 °C) Rb metal targets. Metal targets are used at other facilities [3–5] and offer obvious production rate advantages due to a higher relative density of Rb target atoms and a higher expected thermal performance of molten metal. One major disadvantage is the known violent reaction of molten Rb with cooling water and the potential for facility damage following a catastrophic target failure. This represents a significant risk, given the high beam intensities used routinely at IPF. In order to assess this risk, a target failure experiment was conducted at the LANL firing site using a mockup target station. Subsequent fabrication, irradiation and processing of two prototype targets showed a target thermal performance consistent with thermal modeling predictions and yields in agreement with predictions based on IAEA recommended cross sections [6]. Target failure test: The target failure test bed (FIG. 1) was constructed to represent a near replica of the IPF target station, incorporating its most important features. One of the most vulnerable components in the assembly is the Inconel beam window (FIG. 2) which forms the only barrier between the target cooling water and the beam line vacuum. The test bed also mimicked relevant IPF operational parameters seeking to simulate the target environment during irradiation, such as typical cooling water flow velocities around the target surfaces. While the aggressive thermal effects of the beam heating could not be simulated directly, heated cooling water (45 °C) ensured that the rubidium target material remained molten during the failure test. A worst case catastrophic target failure event was initiated by uncovering an oversized predrilled pinhole (1 mm Φ) to abruptly expose the molten target material to fast flowing cooling water. Prototype target irradiations: Two prototype Rb metal target containers were fabricated by machining Inconel 625 parts and by EB welding. The target containers were filled with molten Rb metal under an inert argon atmosphere. Follow-ing appropriate QA inspections, the prototype targets were irradiated in the medium energy slot of a standard IPF target stack using beam currents up to 230 µA. After irradiation the targets were transported to the LANL hot cell facili-ty for processing and for 82Sr yield verification. During the target failure test, cooling water conductivity and pressure excursions in the target chamber were continuously monitored and recorded at a rate of 1 kHz. Video footage taken of the beam window and the pinhole area combined with the recorded data indicated an aggressive reaction between the Rb metal and the cooling water, but did not reveal a violent explosion that could seriously damage the beam window. These observations, together with thermal model predictions, provided the necessary confidence to fabricate and fill prototype targets for irradiation at production-scale beam currents. X-ray imaging of filled targets (FIG. 3) shows a need for tighter control over the target fill level. One prototype target was first subjected to lower intensity (< 150 µA) beams before the second was irradiated at production level (230 µA) beams. During irradiation, monitoring of cooling water conductivity indicated no container breach or leak and, as anticipated given the model predictions, the post irradiation target inspection showed no sign of imminent thermal failure (see FIG. 4). Subsequent chemical processing of the targets followed an established procedure that was slightly modified to accommodate the larger target mass. TABLE 1 shows that post chemistry 82Sr yields agree to within 2 % of the in-target production rates expected on the basis of IAEA recommended cross sections. The table also compares 82Sr yields from the Rb metal targets against yields routinely obtained from RbCl targets, showing an increase in yield of almost 50 %.
4

Bulk liquid-metal irradiation system

Gelbart, W. January 2015 (has links)
Introduction Low melting point metals are often encapsulated in a hermetic container, irradiated and the container transferred to hot-cell for material removal and processing. An important process of this kind is the production of 82Sr from rubidium (melting point: 39.5 °C.) This new concept departures completely form the encapsulated targets approach and allows an almost continues production by the irradiation of the bulk metal. As well, eliminated is the target transfer. By placing the target material dissolution chamber right in the target station, only the dissolution product is pumped to the hotcell for further processing. Material and Methods Some of the disadvantages of the encapsulated target are: 1. Complicated transfer system that is ex-pensive to install, slow and prone to failures. 2. Complex and expensive encapsulation procedure. 3. Loss of production time during the lengthy target changing. 4. Capsule geometry is constrained by the encapsulating process and transfer demands compromising heat transfer and beam power. To avoid the difficulties of liquid metal handling, metal salts are often used instead (rubidium chloride is one example). This creates other problems and limits the beam currents and production yields. In the system described, the liquid metal is transferred (by gravity) from a bulk container to an irradiation chamber. The chamber, made out of nickel-plated silver, holds the correct quantity of rubidium for one irradiation run. Because of the geometry of the chamber and the efficient cooling, up to 40KW of beam power can be delivered to the target. The chamber is equipped with thermocouples and a liquid-metal level detector and is entirely of welded/brazed construction. The alloy foil that forms the beam window is electron-beam welded to the chamber front ring. At the end of irradiation the irradiated liquid metal is gravity fed into a reaction chamber situ-ated below the irradiation chamber, and a new load of fresh rubidium released into the irradia-tion chamber. The liquid-metal transfer and the irradiation components are shown on FIG. 1, and the sectional view on FIG. 2. Appropriate chemicals (n-butanol in the case of rubidium) are delivered to the reaction chamber and the irradiated metal dissolved. The liquid dissolution product is transferred back to the hotcell. Since all steps of the reaction involve liquids, only small diameter tubes connect the target station with the hotcell. The transfer is fast and simple. The bulk liquid-metal storage container can be constructed to hold enough material for 10 or more runs. When empty, it is replaced with a pre-loaded one. The container is connected to the target system with one coupling and the exchange takes a short time. A robotic bottle exchange can be implemented if desired. The station is equipped with its own vacuum system, beam diagnostic (consisting of a four-sector mask) and a collimation. The target chamber and each of the beam intercepting components are electrically insulated to allow beam current monitoring. Constructed entirely out of metal and ceramic the target core assembly does not suffer from radiation damage. The use of aluminum, silver and alumina reduce component activation. Results and Conclusion A large part of the station design is based on the well proven construction of high current solid target system and is using the same, or similar components. Test was performed to optimize the liquid-metal transfer and the chamber filling with the correct volume, while leaving some room for expansion. A process for niobium coating of sliver is investi-gated. Niobium is known to provide good corro-sion resistance against liquid metals. Thermal modelling of the target and flow analysis of the cooling geometry is under way.
5

Growth and Characterization of ZnO for the Front Contact of Cu(In,Ga)Se2

Bhatt, Rita 01 January 2000 (has links)
ZnO window layers for CIGS solar cells are grown with a DC sputtering technique instead of a conventional RF sputtering technique. Transparent window layers and buffer layers are sputtered from the Zn target in the presence of Oxygen. The window layer is doped with Aluminum in order to achieve high electrical conductivity and thermal stability. The effect of different sputtering parameters on the electrical and optical properties of the films is elaborately studied. Sets of annealing experiments are also performed. Combinations of different deposition parameters are examined to design the optimum fabrication conditions. We are able to deposit 85% transparent, Al doped ZnO films having 002-axis orientation and 4e-4 ohm-cm resistivity, which is successfully, used on CIGS solar cells. Resistivity of undoped ZnO buffer layers is varied form 10-2 ohm-cm to unmeasurable by varying the sputtering parameters. The performance of a reactively sputtered window layer and a buffer layer have matched the performance of the RF sputtered ZnO on CIGS solar cells. There has been considerable effort to eliminate Chemical Bath Deposition of the CdS buffer layer from CIS solar cell fabrication. The performance of an undoped DC sputtered ZnO layer is examined on Cd free CIGS solar cells. The ZnO buffer layer is directly sputtered on an underlying CIGS material. The performance of Cd free solar cells is highly susceptible to the presence of Oxygen in the sputtering ambient of the buffer layer deposition [6]. As Oxygen is a growth component in reactive sputtering, the growth mechanisms of the DC-sputtered buffer layer are studied to improve the understanding. The performance of all reactively sputtered ZnO devices matched the values reported in the literature and the results for DC sputtered ZnO on Cd-free solar cells were encouraging.
6

Micro- et nanostructure des revêtements (Ti, Al)N et comportement tribologique au voisinage de la transition structurale / Micro- and nanostructure of Ti1-xAlxN thin films and wear close to the structural transition (fcc/hcp)

Pinot, Yoann 20 January 2015 (has links)
Les films de nitrures métalliques nanostructurés sont généralement utilisés comme revêtements protecteurs. Ti1-xAlxN (0 ≤ x ≤ 1) peut être considéré comme un système modèle, où TiN (cubique) et AIN (hexagonal) sont partiellement miscibles. L’élaboration par dépôt physique en phase vapeur donne au film une microstructure colonnaire complexe composée de phase métastable pouvant cohabiter avec des précipités localisés aux joints de grains. Une haute dureté et une grande résistance à l’oxydation sont observées pour un maximum d’atomes de Ti substitué par des atomes de Al en réseau cubique. Les conditions de dépôt et la composition jouent un rôle majeur sur la substitution des éléments métalliques (Ti ,Al). Nous avons préparé deux séries de films déposés par pulvérisation cathodique magnétron réactive à partir de cibles TiAl compartimentées et frittées. La micro- et nanostructure des films ont été analysées par Diffraction, Spectroscopie d’Absorption des rayons X et Microscopie Electronique à Transmission. L’usure des revêtements a été étudiée par microtribologie. Nous observons pour les films riches en Ti (x < 0,5) des directions de croissances [200]c et [111]c, caractéristiques d’un réseau cubique. Tandis que, les films riches en Al (x > 0,7) présentent une croissance de domaines bien cristallisés suivant la direction [002]h du réseau hexagonal. De plus, nous avons mis en évidence l’apparition de la transition cubique / hexagonal à des teneurs en Al plus élevée pour les films issus de cible frittée. Ces films montrent une meilleure résistance à la fissuration et à l’usure que ceux déposés à partir de cible compartimentées. / Ti1-xAlxN (0 ≤ x ≤ 1) is considered as a model system, where TiN (fcc) and AlN (hcp) do not mix over the whole composition range due to their low miscibility. However, the physical vapour deposition (PVD) allows achieving metastable phases of Ti1-xAlxN, where Al atoms are partially substituting for Ti in fcc lattice. Ti1-xAlxN coatings exhibit high hardness and oxidation resistance for the maximum Al substituted to Ti in fcc lattice (about x=0.6). The proportion of grain boundaries and the limit solubility play a major role on the mechanical properties and resistance to wear of the coatings. Several techniques are employed to investigate two sets of Ti1-xAlxN thin films deposited by magnetron reactive sputtering from two types of metallic targets onto Si (100). Lattice symmetry of crystallised domains and columnar growth structure of the films are characterized by X-ray diffraction (XRD) and electron microscopy (TEM, HRTEM). Several local probes such as X-ray absorption fine structure (XAFS), diffraction anomalous fine structure (DAFS) and Electron Energy Loss Spectroscopies (EELS) which are very sensitive to the symmetry of the atomic sites either octahedral for fcc lattice or tetrahedral for hcp one are carried out. For Ti-rich films (x < 0.5), the competitive growth of cubic domains between [200]c and [111]c is observed. For Al-rich films (x > 0.7) have a domain growth well crystallized in the direction [002]h the hexagonal lattice. In addition, the cubic / hexagonal transition in Al contents higher is observed for films from sintered target. These films show better wear resistance than those deposited from target compartmentalized.

Page generated in 0.077 seconds