• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alterungsuntersuchungen an Nickelmetall-Hydrid-Hochleistungsakkumulatoren für Hybridfahrzeuge

Wiedemann, Uwe January 2007 (has links)
Zugl.: Ulm, Univ., Diss., 2007
2

Entwicklung eines Recyclingprozesses für Nickel-Metallhydridbatterien /

Müller, Tobias. January 2004 (has links)
Thesis (doctoral)--Techn. Hochsch., Aachen, 2004.
3

Anwendung neuer Materialien für Niedrig-Energie Anzündelemente in Airbagsystemen

Weiß, Uwe 13 September 2004 (has links) (PDF)
Die erhebliche Zunahme elektronischer Funktionsgruppen im Kraftfahrzeug erfordert zukünftig den verstärkten Einsatz von Netzwerken in Form von Bussystemen. Dieser Entwicklung folgend werden neue Generationen von Airbagsystemen ebenfalls intelligente, busfähige Anzünder benötigen. Die Zielstellung dieser Arbeit besteht in der Entwicklung eines neuen Materialsystems für Anzündelemente pyrotechnischer Systeme in Airbaganwendungen mit niedrigem Energiebedarf. Zur Anwendung kam, aufgrund seiner speziellen Eigenschaften, das Hafniumhydrid. Der angestrebten vollständigen Integrationsfähigkeit der eigentlichen Zündstruktur in anwendungsspezifische Schaltkreise wird durch die im Rahmen dieser Arbeit entwickelten, halbleiterprozeßkonformen Technologie und einer angepaßten Aufbau- und Verbindungstechnik Rechnung getragen. Weitere Kernpunkte der Arbeit umfassen die Charakterisierung der eigentlichen Zündschicht hinsichtlich des Wasserstoffgehaltes, der Mikro-, Schicht- und Oberflächenstruktur, des Verhaltens an Grenzflächen und der auftretenden Schichtspannungen. Zur Beurteilung der Langzeitstabilität der Hafniumhydridschichten dient die Auswertung des Verhaltens des Zündstrukturwiderstandes in Langzeittests unter thermischer Belastung. Zum elektrisch-thermischen Verhalten der Anzünder wurden Simulationsrechnungen nach der Methode der finiten Elemente durchgeführt. Die Verifikation des FEM-Modells erfolgte in praktischen Versuchen am Referenzmaterial Poly-Silicium. Darauf aufbauend erfolgten weitere Simulationsrechnungen zum Verhalten der Hafniumhydridzündschichten, speziell zu Fragen der Vorschädigung der Zündstrukturen. Praktische Untersuchungen zum Zündverhalten der Anzündstrukturen sowie Versuche zum Funktionsverhalten des Gesamtelementes im Gasgenerator belegen die sehr guten Zündeigenschaften der Hafniumhydridschichten im busfähigen Anzündelement. Ebenso konnte die potentielle Eignung der präparierten HfHx-Anzündelemente für Standard Anzünder Applikationen gezeigt werden.
4

Utformning av Bränslecellsystem för Autonom Undervattensfarkost / Design of a Fuel Cell System for an Autonomous Underwater Vehicle

Glenngård, Anton, Helmersson, Sofia, Kessler, Amanda, Nilsson, Elisabeth January 2016 (has links)
Avdelningen Marina System på Kungliga Tekniska Högskolan har designat och konstruerat en autonom undervattensfarkost (AUV). I dagsläget drivs farkosten drivs av ett litiumpolymerbatteri. Ett bränslecellssystem bestående utav PEM-bränslecellsstackar (Polymerelektrolytbränslecell), metallhydrid och trycksatt syrgas har designats för att byta ut det befintliga litiumpolymerbatteriet. För att få ett säkert system är det utrustat med vätgassensor, trycksensor, voltmätare samt temperatursensor. Eftersom både syrgas och vätgas måste medföras i farkosten, jämfört med landgående fordon som kan utnyttja syret från omgivande atmosfär, har olika bränslelagringsmetoder undersökts. För att lagra syrgas har trycksatt gas valts, denna lagras i en tank gjord av kolfiber och ett har ett tryck på 300 bar. Vätgasen väljs att lagras i en FeTi-metallhydrid på grund av dess volymmässiga fördel. Metallhydrid är en volymeffektiv men viktineffektiv lagringsmetod, vilket gör att den är perfekt till en undervattensfarkost. Metallhydriden förvaras i en tank gjord av aluminium. Eftersom bränslecellerna producerar vatten har olika sätt att fånga upp detta undersökts. Regenerad cellulosa (disktrasa) har hög absorptionsförmåga och har därför valts för systemet. De bränslecellesstackar som införskaffades har testats med hjälp av programvaran Labview. De presterade något under vad tillverkaren hävdade, något som antas bero på effektbehov hos kontroller och fläktar. Olika driftbetingelser har undersökts för att kunna använda bränslecellsstackarnas fulla potential. Det slutgiltiga systemet får ej plats i farkosten. En teoretisk studie för när bränsleceller blir mer volymeffektiva än batterier visar att för ett helt optimerat system går gränsen vid 3 liter, vilket motsvarar att 822 normalliter vätgas måste tas med. I framtiden skulle en kemisk lagringsmetod av syrgas vara att föredra, exempelvis väteperoxid. Metallhydrid är ett bra sätt att lagra vätgas men tankmaterialet skulle kunna vara exempelvis rostfritt stål istället för aluminium så att tanken blir mer volymeffektiv på grund av den högre brottgränsen hos stålet. Ett syrgasflöde till bränslecellen istället för ut i farkostens atmosfär skulle kunna öka verkningsgraden och därmed räckvidden.
5

Metal Hydrides as Enabling Technology for the use of Hydrogen-Based Energy Storage Systems on Telecommunication Satellites

Reissner, Alexander 26 September 2017 (has links) (PDF)
Next generation telecommunication satellites will demand an increasing amount of power in the range of 30 kW or more within the next 10 years. Battery technology that can sustain 30 kW for an eclipse length of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS) were identified years ago as a possible alternative to rechargeable batteries. Nevertheless, one major drawback was identified by several independent system studies, namely the need to dissipate large amounts of heat from the fuel cell (FC) during eclipse. This in turn requires massive thermal hardware (mainly large radiators) that can contribute up to 50% of the system mass. In order to overcome this issue, the use of metal hydrides (MH) as combined hydrogen and heat storage system was suggested as a starting point of the research presented in this thesis. During eclipse the FC must dissipate waste heat, and at the same time the MH tank must absorb heat in order to desorb hydrogen. Rather than dissipating the waste heat from the FC directly through a radiator, it can be stored solely, or partly, in the MH tank, to be dissipated during Equinox, with a 20 times slower rate, requiring a radiator with significantly less volume and mass. This thesis aims to present the potential of using such MH storage tanks to alternately store hydrogen and waste heat from the FC on-board a spacecraft, investigated by theoretical and experimental means. The model application for the MH tank technology considered in this thesis is a 39 kW telecommunication satellite. Nevertheless, the derived results are to be considered a generic outcome and can be translated or scaled to many other applications. / Es kann davon ausgegangen werden, dass der Trend hin zu Telekommunikationssatelliten mit immer höherer Leistung in den nächsten 10 Jahren zu Satelliten-Plattformen mit 30kW und mehr führen wird. Batterien, welche eine Leistung von 30kW für Eklipse-Längen von 72 Minuten zur Verfügung stellen müssen, werden daher einen immer größeren Einfluss auf die Gesamtmasse des Satelliten haben. Regenerative Brennstoffzellensysteme wurden daher schon vor Jahren als mögliche Alternative zu wieder aufladbaren Batterien untersucht. Mehrere unabhängige Studien sind zu dem Schluss gekommen, dass die größte Problematik in der Einführung von Brennstoffzellensystemen auf Satelliten darin besteht, die relativ großen Mengen an Abwärme effizient abzustrahlen. Die Radiatoren, die hierfür benötigt werden können 50% der Masse des Gesamtsystems ausmachen. Um dieses Problem zu überwinden wurde als Startpunkt der vorliegenden Arbeit die Nutzung von Metallhydriden als kombinierter Wasserstoff- und Wärmespeicher vorgeschlagen. Während sich der Satellit im Erdschatten befindet produziert die Brennstoffzelle Abwärme, während zur gleichen Zeit der Metallhydrid-Tank Wärme benötigt um Wasserstoff freizusetzen. Die Abwärme der Brennstoffzelle muss daher nicht direkt über Radiatoren abgestrahlt werden, sondern wird von Metallhydrid-Tank absorbiert um dann während dem restlichen Erdumlauf 20 mal langsamer mit einem deutlich kleinerem und leichteren Radiator abgegeben werden zu können. Diese Arbeit hat zum Ziel, das durch analytische und experimentelle Methoden untersuchte Potential der Anwendung einer solchen Technologie auf Satelliten zu präsentieren. Die Modellapplikation für diese Arbeit ist ein 39kW Telekommunikationssatellit. Die Ergebnisse lassen sich allerdings auch auf andere Anwendungen skalieren und übertragen.
6

Anwendung neuer Materialien für Niedrig-Energie Anzündelemente in Airbagsystemen

Weiß, Uwe 21 July 2004 (has links)
Die erhebliche Zunahme elektronischer Funktionsgruppen im Kraftfahrzeug erfordert zukünftig den verstärkten Einsatz von Netzwerken in Form von Bussystemen. Dieser Entwicklung folgend werden neue Generationen von Airbagsystemen ebenfalls intelligente, busfähige Anzünder benötigen. Die Zielstellung dieser Arbeit besteht in der Entwicklung eines neuen Materialsystems für Anzündelemente pyrotechnischer Systeme in Airbaganwendungen mit niedrigem Energiebedarf. Zur Anwendung kam, aufgrund seiner speziellen Eigenschaften, das Hafniumhydrid. Der angestrebten vollständigen Integrationsfähigkeit der eigentlichen Zündstruktur in anwendungsspezifische Schaltkreise wird durch die im Rahmen dieser Arbeit entwickelten, halbleiterprozeßkonformen Technologie und einer angepaßten Aufbau- und Verbindungstechnik Rechnung getragen. Weitere Kernpunkte der Arbeit umfassen die Charakterisierung der eigentlichen Zündschicht hinsichtlich des Wasserstoffgehaltes, der Mikro-, Schicht- und Oberflächenstruktur, des Verhaltens an Grenzflächen und der auftretenden Schichtspannungen. Zur Beurteilung der Langzeitstabilität der Hafniumhydridschichten dient die Auswertung des Verhaltens des Zündstrukturwiderstandes in Langzeittests unter thermischer Belastung. Zum elektrisch-thermischen Verhalten der Anzünder wurden Simulationsrechnungen nach der Methode der finiten Elemente durchgeführt. Die Verifikation des FEM-Modells erfolgte in praktischen Versuchen am Referenzmaterial Poly-Silicium. Darauf aufbauend erfolgten weitere Simulationsrechnungen zum Verhalten der Hafniumhydridzündschichten, speziell zu Fragen der Vorschädigung der Zündstrukturen. Praktische Untersuchungen zum Zündverhalten der Anzündstrukturen sowie Versuche zum Funktionsverhalten des Gesamtelementes im Gasgenerator belegen die sehr guten Zündeigenschaften der Hafniumhydridschichten im busfähigen Anzündelement. Ebenso konnte die potentielle Eignung der präparierten HfHx-Anzündelemente für Standard Anzünder Applikationen gezeigt werden.
7

Metal Hydrides as Enabling Technology for the use of Hydrogen-Based Energy Storage Systems on Telecommunication Satellites

Reissner, Alexander 20 December 2016 (has links)
Next generation telecommunication satellites will demand an increasing amount of power in the range of 30 kW or more within the next 10 years. Battery technology that can sustain 30 kW for an eclipse length of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS) were identified years ago as a possible alternative to rechargeable batteries. Nevertheless, one major drawback was identified by several independent system studies, namely the need to dissipate large amounts of heat from the fuel cell (FC) during eclipse. This in turn requires massive thermal hardware (mainly large radiators) that can contribute up to 50% of the system mass. In order to overcome this issue, the use of metal hydrides (MH) as combined hydrogen and heat storage system was suggested as a starting point of the research presented in this thesis. During eclipse the FC must dissipate waste heat, and at the same time the MH tank must absorb heat in order to desorb hydrogen. Rather than dissipating the waste heat from the FC directly through a radiator, it can be stored solely, or partly, in the MH tank, to be dissipated during Equinox, with a 20 times slower rate, requiring a radiator with significantly less volume and mass. This thesis aims to present the potential of using such MH storage tanks to alternately store hydrogen and waste heat from the FC on-board a spacecraft, investigated by theoretical and experimental means. The model application for the MH tank technology considered in this thesis is a 39 kW telecommunication satellite. Nevertheless, the derived results are to be considered a generic outcome and can be translated or scaled to many other applications.:1 Introduction 2 The Metal Hydride Regenerative Fuel Cell System (MH-RFCS) 3 Metal Hydride Material Selection and Characterization 4 Design and Optimization of the Metal Hydride Tank System 5 Design and Manufacturing of a Technology Demonstrator 6 Simulation of the Metal Hydride Tank Performance 7 Experimental Results and Discussion 8 Outlook 9 Bibliography / Es kann davon ausgegangen werden, dass der Trend hin zu Telekommunikationssatelliten mit immer höherer Leistung in den nächsten 10 Jahren zu Satelliten-Plattformen mit 30kW und mehr führen wird. Batterien, welche eine Leistung von 30kW für Eklipse-Längen von 72 Minuten zur Verfügung stellen müssen, werden daher einen immer größeren Einfluss auf die Gesamtmasse des Satelliten haben. Regenerative Brennstoffzellensysteme wurden daher schon vor Jahren als mögliche Alternative zu wieder aufladbaren Batterien untersucht. Mehrere unabhängige Studien sind zu dem Schluss gekommen, dass die größte Problematik in der Einführung von Brennstoffzellensystemen auf Satelliten darin besteht, die relativ großen Mengen an Abwärme effizient abzustrahlen. Die Radiatoren, die hierfür benötigt werden können 50% der Masse des Gesamtsystems ausmachen. Um dieses Problem zu überwinden wurde als Startpunkt der vorliegenden Arbeit die Nutzung von Metallhydriden als kombinierter Wasserstoff- und Wärmespeicher vorgeschlagen. Während sich der Satellit im Erdschatten befindet produziert die Brennstoffzelle Abwärme, während zur gleichen Zeit der Metallhydrid-Tank Wärme benötigt um Wasserstoff freizusetzen. Die Abwärme der Brennstoffzelle muss daher nicht direkt über Radiatoren abgestrahlt werden, sondern wird von Metallhydrid-Tank absorbiert um dann während dem restlichen Erdumlauf 20 mal langsamer mit einem deutlich kleinerem und leichteren Radiator abgegeben werden zu können. Diese Arbeit hat zum Ziel, das durch analytische und experimentelle Methoden untersuchte Potential der Anwendung einer solchen Technologie auf Satelliten zu präsentieren. Die Modellapplikation für diese Arbeit ist ein 39kW Telekommunikationssatellit. Die Ergebnisse lassen sich allerdings auch auf andere Anwendungen skalieren und übertragen.:1 Introduction 2 The Metal Hydride Regenerative Fuel Cell System (MH-RFCS) 3 Metal Hydride Material Selection and Characterization 4 Design and Optimization of the Metal Hydride Tank System 5 Design and Manufacturing of a Technology Demonstrator 6 Simulation of the Metal Hydride Tank Performance 7 Experimental Results and Discussion 8 Outlook 9 Bibliography

Page generated in 0.0692 seconds