• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 17
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 101
  • 101
  • 31
  • 21
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Optical transmission properties of dielectric aperture arrays. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. / Subsequently, optical transmission properties through a self-mixing interferometer array are studied and a novel high-resolution cost-effective optical spectrometer is proposed. The miniature interferometer-based spectrometer is made of polymethyl methacrylate (PMMA) with a CCD as the detector. The detected intensity of each CCD pixels contains the spectral information. Since each frequency component in the incoming beam corresponds to a unique phase difference of the two beam portions of each optical interferometer, the total intensity received by each CCD pixel, which is resulted from the addition of the interference signals from all the frequency components in the beam, should also be unique. Therefore, the spectrum calculation is a problem to solve an ill-posed linear system by using Tikhonov regularization method. Simulation results show that the resolution can reach picometer level. Apart from the choice of path difference between the interfering beams, the spectral resolution also depends on the signal-to-noise ratio and analogue-digital conversion resolution (dynamic range) of the CCD chip. In addition, the theory of uniform waveguide scattering is explored to expand the possibility of using such mini-interferometers for performing free-space spectral analysis of waveguide devices. At the same time, the method of least squares is used to correct the pixel non-uniformity of the CCD so as to improve the performance of the spectrometer. / The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index units (RIU) and a dynamic range as large as 0.17 RIU. / The sensor chip and spectrometer chip introduced here are based on the interference of light transmitted through dielectric aperture arrays. Their compact feature renders these devices ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs. / Yang, Tao. / Adviser: H. P. Ho. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 150-163). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
82

Alkali impurities on quantum thin films : adsorption, electron scattering, and impurity-induced nano-structure formation in the quantum regime

Khajetoorians, Alexander Ako, 1980- 28 September 2012 (has links)
For thin epitaxial metal films, when the thickness is on the order of the Fermi wavelength, [lambda subscript F], quantum confinement can dramatically alter the physical properties of the film. These so-called Quantum Size Effects (QSE) can dramatically alter the morphology of thin films by an intricate interplay between kinetics and surface energy driven thermodynamics. These effects lead to rich growth-related phenomena in Pb(111) films grown on semiconductor substrates such as Si(111). For example, QSE can drive flat film formation when growth is dominated by surface energy oscillations. This is rather surprising for Pb/Si systems because of a rather high lattice mismatch. However, these films are not defect free, but rather show common occurrences of three defect types. Low Temperature Scanning Tunneling Microscopy (LT-STM) was utilized to characterize these defects on the atomic scale. Furthermore, these defects create modulations in the electron density resulting in fluctuations in QWS near defect sites. Another topic of recent interest is how QSE affect adsorption of as well as how adsorbates modify QSE for these Pb films. In this thesis, LT-STM and first principles calculations were utilized to study Cs adsorbates on Pb film surfaces, defects, and step edges. Cs adsorption is intricately related to the electronic structure of the surface, especially the defect sites which can act as surface traps. These Cs adsorbates, which are assumed to be ionized, enhance elastic surface scattering of empty-state electrons. This results in observable wave interference patterns near Cs impurities. Furthermore, Cs adsorbates, by an overall step energy reduction, can promote QSE-related nanostructures, which are otherwise too weak when kinetic effects cannot be ignored. This enhancement of "quantum stability" is driven by favorable Cs step binding and can be explained within the contexts of Density Functional Theory (DFT). / text
83

Low temperature scanning tunneling microscope study of metallic thin films and nanostructures on the semiconductor substrates

Qin, Shengyong, 1980- 10 October 2012 (has links)
Many properties of the thin films are different from the bulk value and in many cases, depend dramatically on the film thickness. In the metallic ultra-thin films epitaxially grown on the semiconductor substrate, the conduction electrons are confined by the vacuum and metal-semiconductor interface. When the film thickness is comparable to the electron Fermi wavelength, this confinement will produce discrete energy levels known as quantum well states (QWS), which dramatically modify the electronic structures of the thin film and this is called quantum size effect (QSE). QSE will have a profound effect on a lot of physical properties of the thin films. Among various systems exhibiting QSE, Pb/Si (111) is the most widely studied one and exhibits the richest phenomena in QSE. In this study, a home made low temperature Scanning Tunneling Microscopy/Spectroscopy (LT-STM/S) was used to study the superconductivities of the Pb thin films. Quantum oscillations of the superconductivity have been observed for the films down to 4 monolayer and the oscillation amplitude increases as the film gets thinner. To resolve the discrepancies between the superconductivities measured with ex-situ transport and in-situ STS. We also studied the influence of Au overlay on the Pb thin films with LT-STM/S, and found out the deposition of Au on Pb dramatically roughened the Pb films. Finally, we successfully grew large scale near perfect 2ML Pb films. There are two types of films which exhibit different Moiré patterns. LT-STS studies revealed there is big difference in the superconductivity Tc of these two films, both of which decreased dramatically from that of the 4ML film. / text
84

An investigation of the deformation of anodic aluminium oxide nano-honeycomb during nanoindentation

Ng, King-yeung., 吳競洋. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
85

Magnetic susceptibility observation of a spin-reorientation transition in Fe/2 ML Ni(111)/W(110) films.

Arnold, C. S. January 1997 (has links)
Thesis (Ph.D.) -- McMaster University, 1997. / Includes bibliographical references. Also available via World Wide Web.
86

Optically transparent IR reflective heat mirror films of ZNS-AG-ZNS /

Smith, Bruce W. January 1989 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1989. / Spine Title: Optically transparent heat mirror films. Includes bibliographical references (leaves 58-59).
87

The microstructural effects of metallization and heat treatment on thin gate oxide for use in sub-micron MOSFETs /

McCarthy, John M., January 1996 (has links)
Thesis (Ph. D.), Oregon Graduate Institute of Science & Technology, 1996.
88

Comparison of the structural properties of a-Si:H and CulnSe₂ on glass and flexible substrates

Langa, Dolly Frans 14 March 2012 (has links)
M.Sc. / Thin film solar cells based on polycrystalline indium diselenide (CulnSe₂) and amorphous silicon (a-Si:H) are promising candidates for the efficient conversion of sunlight into useable, cheap electrical energy. However, typical device structures are rather complex and consists of semiconductor/metal contacts as well as complicated p - n and p - i - n heterojunctions. In this study, CulnSe₂ absorber layers with excellent material properties were prepared by the selenization of metallic alloys. The a-Si:H thin films were deposited by radio frequency (RF) glow discharge in vacuum. The polycrystalline and amorphous absorber layers were deposited on glass and flexible substrates. In each case, a systematic study was conducted in which all the relevant processing parameters were varied over a broad range. These studies indicated that the structural features of the substrate significantly influence the structural features of the semiconductor thin films. The flexible substrate (kapton) was characterized by the presence of ridges, which distorted the growth behavior of the films. Deposition of ln/Cu/ln metallic alloys onto Mo coated glass (kapton) resulted in discontinuous metallic alloys, which were characterized by the presence of separated elongated island structures. The structural features of the precursors were maintained in the absorber film after selenization in elemental Se vapor. The morphological features of the CulnSe₂ absorber films were also critically influenced by the reaction temperature And reaction period to Se. The structural features on a-Si:H was significantly influenced by the structural features of the particular substrate used. Atomic force microscopy (AFM) imaging in combination with statistical analysis revealed higher roughness values when the amorphous semiconductor materials were deposited onto kapton, which negatively impacts on the device properties of solar cell devices.
89

Investigations of the Air-Water Interface: A Structural Analysis of Metallic Surface Films and Aquatic Surface Films by Comparative Microscopy

Smith, Randall William 05 June 2015 (has links)
The air-water interface is an important natural boundary layer that has been neglected as an area of environmental field research. This study establishes that comparative microscopy can be an effective environmental method, and establishes that the term metallic surface films, is a more accurate descriptor than iron oxide surface films. This research shows that surface films are complex, often with layered structure, serve as habitat for significant biota, and act as a point of mineralization to several transition metal elements including manganese, iron, copper, nickel and zinc. This study demonstrates that surface films form under several conditions and can have diverse morphology. Activity of biota, microbes, particularly diatoms, suggests that bacteria and cyanobacteria integrate into the film often in patches, represented by forms and casts. Analytical imaging is used to document and compare film morphology and structures, using scanning electron microscopy, photoemission electron microscopy and transmission electron microscopy with elemental analysis by energy dispersive spectroscopy to confirm the hypothesis. Instrument parameters and strengths are reviewed. Component layers of a copper/zinc film were used to confirm metallic layers and elemental distribution. Bacterial casts were used to confirm film interaction, and to show entrainment and enrichment of the film to incorporate autochthonous and allochthonous materials into the films themselves. Most samples were from Oregon selected sites, with some samples from Maryland and Barbados.
90

Atomic-Scale Analysis of Plastic Deformation in Thin-Film Forms of Electronic Materials

Kolluri, Kedarnath 01 May 2009 (has links)
Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and grows into the bulk of the film due to dislocation glide. The role of surface orientation in the strain relaxation of these strained thin films under biaxial tension is discussed and the stability of the fcc crystalline phase is analyzed. Finally, the mechanical response during dynamic tensile straining of pre-treated fcc metallic thin films with varying propensities for formation of stacking faults is analyzed. Interactions between dislocations and stacking faults play a significant role in the cross-slip and eventual annihilation of dislocations in films of fcc metals with low-to-medium values of the stable-to-unstable stacking-fault energy ratio, γs/γu. Stacking-fault-mediated mechanisms of dislocation depletion in these ultrathin fcc metallic films are identified and analyzed. Additionally, a theoretical analysis for the kinetics of strain relaxation in Si 1-x Ge x (0 ≤ x ≤ 1) thin films grown epitaxially on Si(001) substrates is conducted. The analysis is based on a properly parameterized dislocation mean-field theoretical model that describes plastic-deformation dynamics due to threading dislocation propagation; the analysis addresses strain relaxation kinetics during both epitaxial growth and thermal annealing, including post-implantation annealing. The theoretical predictions for strain relaxation as a function of film thickness in Si 0.80 Ge 0.20 /Si(001) samples annealed after growth, either unimplanted or after He + implantation, are in excellent agreement with reported experimental measurements.

Page generated in 0.0666 seconds