• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 11
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The genesis and evolution of lode gold mineralization and mafic host lithologies in the late-Archean Norseman Terrane, Yilgarn Block, Western Australia

McCuaig, Thompson Campbell 01 January 1997 (has links)
Six distinct types of mafic igneous rocks are present within the ca. 2714-2690 Ma Woolyeenyer Formation of the Norseman Terrane, East Central Yilgarn Superterrane (ECYS), Yilgarn Block, Western Australia. (1) Tholeiitic basalts and gabbros comprise the bulk of the formation, and are characterized by flat to slightly depleted mantle-normalized incompatible element patterns, and å<sub>Nd</sub> values of +2 to +3. (2) High-MgO tholeiite dykes (HMT) with normalized REE and multielement patterns like those of tholeiites, albeit at slightly lower abundances. (3) Enriched high-MgO tholeiite dikes (EHMT) with MgO, Cr similar to HMT but with extreme Al-depletion, enrichment in incompatible elements and HREE depletion, and å<sub>Nd</sub> values of -2.0 to -1.2. (4) High-MgO tholeiites with characteristics transitional to HMT and EHMT (THMT). Incompatible element enriched tholeiites transitional between HMT, HMT and tholeiite, subdivided into (5) ET1, characterized by enrichment in incompatibleelements and LREE, with relatively flat HREE patterns and ENd values ranging from -0.1 to 1.0, and (6) ET2, characterized by Al-depletion and pronounced HREE depletion. The HMT and tholeiites are comagmatic, and positive ENd values and comparable normalized trace element patterns suggest derivation of these rocks from a similar depleted source. Conversely, detailed modelling demonstrates that EHMT compositions cannot be generated by alteration or crustal contamination of HMT, Al-undepleted or Al-depleted komatiitic magmas, and require a source (1) that was enriched in incompatible elements by small volume partial melts prior to melting, and (2) where garnet was retained during melting. Generation of the above mafic lithologies require that incompatible element enriched and depleted sources existed at 2.7 Ga in the Norseman Terrane. The EHMT are the first report of such severely Al-depleted 2.7 Ga rocks from ECYS. The Archean lode-gold deposits at Norseman, Western Australia, consist of auriferous quartz veins in dextral-reverse ductile shear zones within tholeiitic metabasalts of upper-greenschist to amphibolite facies metamorphic grade. Three types of deposits (northern, central, southern) are delineated on the basis of their spatial distribution, veining style, alteration mineralogy and metamorphic grade of host rocks. All deposits exhibit variable ductile deformation of veins and contiguous alteration haloes, implying a syn-deformational genesis at high temperatures. From Northern to Southern deposits, the alteration assemblages are indicative of higher temperatures, and there are progressively greater degrees of dynamically recovered textures in quartz. Initial Pb isotope compositions of galena and altaite from lode gold deposits of the Norseman Terrane yield the most variable initial Pb-isotopic compositions for these minerals of any Archean lode gold deposit. Interpreted initial Pb isotope compositions of galena and altaite are systematically more radiogenic with increasing proximity to felsic intrusive rocks and older crust.
2

Evolução magmática, alteração hidrotermal e gênese da mineralização de ouro e cobre do Palito, Província Aurífera do Tapajós (PA) / Magmatic evolution, hydrothermal alteration and geneseis of gold-copper mineralization at Palito, Tapajós Gold Province (PA)

Misas, Carlos Mario Echeverri 31 March 2010 (has links)
O depósito de Au(Cu) do tipo pórfiro do Palito localiza-se na porção central do Cráton Amazônico, na Província Aurífera do Tapajós, em uma área dominada por rochas graníticas e vulcânicas intermediárias a félsicas do final do Paleoproterozóico. Três litotipos compõem este depósito, onde o Granito Palito, de características porfiríticas, é a rocha hospedeira da mineralização de ouro e cobre, e a unidade mais jovem na seqüencia, intrusivo entre as unidades do Granito Rio Novo e o Granodiorito Fofoquinha. Três principais zonas de alteração hidrotermal foram reconhecidas; potássica, propilítica e sericítica. A alteração potássica é volumetricamente a mais importante, e afeita principalmente os corpos graníticos de Palito e Rio Novo, a alteração propilítica constitui um halo externo dentro dos granitos Rio Novo e Palito, e a alteração sericítica relacionada com a mineralização está predominantemente dentro do Granito Palito. Os corpos do minério dentro do granito Palito associam-se principalmente com veios de quartzo e de sulfetos cisalhados de direção predominante NWSE, dentro de zonas de cisalhamento e stockworks hidrotermalizados. Ouro encontra-se também disseminado no Granito Palito. Processos de cisalhamento possivelmente remobilizaram elementos posteriormente concentrados nas zonas de cisalha e stockworks. Análises de isótopos de oxigênio de zonas de alteração hidrotermal e veios mineralizados foram realizadas em quartzo (18OVSMOW = 8,8 a 11,2); feldspato potássico (7,9 a 8,8); sericita (1,7 a 6,9), clorita (2,4) e calcita (9,0 a 23,9). Os cálculos das análises de isótopos estáveis dos minérios, mostram valores de 34S dos sulfetos entre 1,2 a 3,6 , indicando uma fonte magmática. Os cálculos de 18OH2O foram feitos considerando uma temperatura de 350 ºC, e indicam valores para o quartzo entre 3,2 a 5,6 , para o feldspato potássico entre 4,8 a 5,7, sericita varia entre 1,1 a 6,3, clorita -2,6, e calcita entre 6,2 a 21,1. Os dados isotópicos para quartzo e feldspato potássico estão sugirindo fluidos principalmente magmáticos para os primeiros estágios da mineralização. Embora, os valores de sericita e clorita sugerem o influxo de águas meteóricas durante os processos de sericitização e cloritização. Estudos de inclusões fluidas dos grãos de quartzo sugerem uma etapa inicial de exsolução de fluidos, representada por salinidades baixas, desde 0,6 a 1,5 em peso do NaCl eq., á elevadas temperaturas (429 a 462 oC), seguida de processos de boiling, com etapas posteriores de mistura de fluidos indicadas por amplas variações nas salinidades desde 0,3 a > 28,8 em peso do NaCl eq., e temperaturas de homogeneização entre 101 a > 400 oC, que indicam uma origem magmática - hidrotermal para a mineralização. Em conjunto, as características geológicas do depósito, os tipos e estilos de alteração hidrotermal, mais os dados das análises de inclusões fluidas e isótopos estáveis indicam que o depósito do Palito representa uma mineralização do tipo pórfiro, magmático - hidrotermal desenvolvida em um ambiente de arco magmático de margem continental. / The Palito porphyry type copper-gold deposit is located in the central region of the Amazonian craton, in the Tapajós Gold Province (TGP), in an area that is dominated by intermediate to felsic granitic and volcanic rocks of late Paleoproterozoic age. Three lithotypes make up this deposit. The Palito Granite, with porphyritic features, is the host rock for gold and copper mineralization, and it is the youngest unit in the sequence, intrusive in the Rio Novo Granite and Fofoquinha Granodiorite. Three main wall-rock alteration zones have been recognized: potassic, propylitic, and sericitic zones. The potassic alteration is volumetrically the most important, affecting mainly the granitic bodies of Palito and Rio Novo, the propylitic alteration constitutes an outer halo within the Palito and Rio Novo granites, and the sericitic alteration is related to mineralization predominantly within the Palito granite. The ore bodies within the Palito Granite are mainly associated with sheared sulphide-bearing quartz veins trending predominantly NW-SE within shear zones and hydrothermalized stockworks. Gold is also disseminated within the Palito Granite. Shearing possibly remobilized elements, which later were concentrated in the shear zones and stockworks. Oxygen isotope analyses of the hydrothermal alteration zones and mineralized veins have been carried out on quartz (18OVSMOW = 8.8 to 11.2); K- feldspar (7.9 to 8.8); sericite (1.7 to 6.9); chlorite (2.4) and calcite (9.0 to 23.9). Stable isotope analyses of the ore sulphides show 34S values that range from 1.2 to 3.6 , reflecting a magmatic source. For the 18OH2O calculation a temperature of 350 ºC was considered, resulting in values for quartz from 3.2 to 5.6 , and for K-feldspar, from 4.8 to 5.7; values for sericite range from 1.1 to 6.3, for chlorite, -2.6, and for calcite, from 6.2 to 21.1. The isotopic results for quartz and K-feldspar suggest that the ore fluids were mainly derived from magma in the early stage of mineralization. 18O values for sericite and chlorite, however, indicates interaction of meteoric waters during the sericitization and chloritization processes. Fluid inclusion studies of quartz crystals suggest an very early stage of fluid exsolution, indicated by low salinities with a range from 0,6 to 1.5 wt.% NaCl equiv., at higher temperatures (429 to 462 ºC), followed by boiling processes, and posterior fluid-mixing stages, as indicated by high variability of salinities from 0.3 to > 28.8 wt.% NaCl equiv., and homogenization temperatures that range between 101 a > 400 oC, all suggesting a magmatic-hydrothermal source for the mineralization. The geological features of the deposit, styles and types of hydrothermal alteration, stable-isotopes and fluid inclusion analyses indicate that the Palito mineral deposit represents a magmatic-hydrothermal porphyry type developed in a continental margin magmatic arc.
3

Evolução magmática, alteração hidrotermal e gênese da mineralização de ouro e cobre do Palito, Província Aurífera do Tapajós (PA) / Magmatic evolution, hydrothermal alteration and geneseis of gold-copper mineralization at Palito, Tapajós Gold Province (PA)

Carlos Mario Echeverri Misas 31 March 2010 (has links)
O depósito de Au(Cu) do tipo pórfiro do Palito localiza-se na porção central do Cráton Amazônico, na Província Aurífera do Tapajós, em uma área dominada por rochas graníticas e vulcânicas intermediárias a félsicas do final do Paleoproterozóico. Três litotipos compõem este depósito, onde o Granito Palito, de características porfiríticas, é a rocha hospedeira da mineralização de ouro e cobre, e a unidade mais jovem na seqüencia, intrusivo entre as unidades do Granito Rio Novo e o Granodiorito Fofoquinha. Três principais zonas de alteração hidrotermal foram reconhecidas; potássica, propilítica e sericítica. A alteração potássica é volumetricamente a mais importante, e afeita principalmente os corpos graníticos de Palito e Rio Novo, a alteração propilítica constitui um halo externo dentro dos granitos Rio Novo e Palito, e a alteração sericítica relacionada com a mineralização está predominantemente dentro do Granito Palito. Os corpos do minério dentro do granito Palito associam-se principalmente com veios de quartzo e de sulfetos cisalhados de direção predominante NWSE, dentro de zonas de cisalhamento e stockworks hidrotermalizados. Ouro encontra-se também disseminado no Granito Palito. Processos de cisalhamento possivelmente remobilizaram elementos posteriormente concentrados nas zonas de cisalha e stockworks. Análises de isótopos de oxigênio de zonas de alteração hidrotermal e veios mineralizados foram realizadas em quartzo (18OVSMOW = 8,8 a 11,2); feldspato potássico (7,9 a 8,8); sericita (1,7 a 6,9), clorita (2,4) e calcita (9,0 a 23,9). Os cálculos das análises de isótopos estáveis dos minérios, mostram valores de 34S dos sulfetos entre 1,2 a 3,6 , indicando uma fonte magmática. Os cálculos de 18OH2O foram feitos considerando uma temperatura de 350 ºC, e indicam valores para o quartzo entre 3,2 a 5,6 , para o feldspato potássico entre 4,8 a 5,7, sericita varia entre 1,1 a 6,3, clorita -2,6, e calcita entre 6,2 a 21,1. Os dados isotópicos para quartzo e feldspato potássico estão sugirindo fluidos principalmente magmáticos para os primeiros estágios da mineralização. Embora, os valores de sericita e clorita sugerem o influxo de águas meteóricas durante os processos de sericitização e cloritização. Estudos de inclusões fluidas dos grãos de quartzo sugerem uma etapa inicial de exsolução de fluidos, representada por salinidades baixas, desde 0,6 a 1,5 em peso do NaCl eq., á elevadas temperaturas (429 a 462 oC), seguida de processos de boiling, com etapas posteriores de mistura de fluidos indicadas por amplas variações nas salinidades desde 0,3 a > 28,8 em peso do NaCl eq., e temperaturas de homogeneização entre 101 a > 400 oC, que indicam uma origem magmática - hidrotermal para a mineralização. Em conjunto, as características geológicas do depósito, os tipos e estilos de alteração hidrotermal, mais os dados das análises de inclusões fluidas e isótopos estáveis indicam que o depósito do Palito representa uma mineralização do tipo pórfiro, magmático - hidrotermal desenvolvida em um ambiente de arco magmático de margem continental. / The Palito porphyry type copper-gold deposit is located in the central region of the Amazonian craton, in the Tapajós Gold Province (TGP), in an area that is dominated by intermediate to felsic granitic and volcanic rocks of late Paleoproterozoic age. Three lithotypes make up this deposit. The Palito Granite, with porphyritic features, is the host rock for gold and copper mineralization, and it is the youngest unit in the sequence, intrusive in the Rio Novo Granite and Fofoquinha Granodiorite. Three main wall-rock alteration zones have been recognized: potassic, propylitic, and sericitic zones. The potassic alteration is volumetrically the most important, affecting mainly the granitic bodies of Palito and Rio Novo, the propylitic alteration constitutes an outer halo within the Palito and Rio Novo granites, and the sericitic alteration is related to mineralization predominantly within the Palito granite. The ore bodies within the Palito Granite are mainly associated with sheared sulphide-bearing quartz veins trending predominantly NW-SE within shear zones and hydrothermalized stockworks. Gold is also disseminated within the Palito Granite. Shearing possibly remobilized elements, which later were concentrated in the shear zones and stockworks. Oxygen isotope analyses of the hydrothermal alteration zones and mineralized veins have been carried out on quartz (18OVSMOW = 8.8 to 11.2); K- feldspar (7.9 to 8.8); sericite (1.7 to 6.9); chlorite (2.4) and calcite (9.0 to 23.9). Stable isotope analyses of the ore sulphides show 34S values that range from 1.2 to 3.6 , reflecting a magmatic source. For the 18OH2O calculation a temperature of 350 ºC was considered, resulting in values for quartz from 3.2 to 5.6 , and for K-feldspar, from 4.8 to 5.7; values for sericite range from 1.1 to 6.3, for chlorite, -2.6, and for calcite, from 6.2 to 21.1. The isotopic results for quartz and K-feldspar suggest that the ore fluids were mainly derived from magma in the early stage of mineralization. 18O values for sericite and chlorite, however, indicates interaction of meteoric waters during the sericitization and chloritization processes. Fluid inclusion studies of quartz crystals suggest an very early stage of fluid exsolution, indicated by low salinities with a range from 0,6 to 1.5 wt.% NaCl equiv., at higher temperatures (429 to 462 ºC), followed by boiling processes, and posterior fluid-mixing stages, as indicated by high variability of salinities from 0.3 to > 28.8 wt.% NaCl equiv., and homogenization temperatures that range between 101 a > 400 oC, all suggesting a magmatic-hydrothermal source for the mineralization. The geological features of the deposit, styles and types of hydrothermal alteration, stable-isotopes and fluid inclusion analyses indicate that the Palito mineral deposit represents a magmatic-hydrothermal porphyry type developed in a continental margin magmatic arc.
4

Métallogenèse de l'uranium dans la région de Litsa (Péninsule de Kola, Russie) / Uranium metallogenenis in the Litsa district (Kola Peninsula, Russia)

Serov, Léonid 24 June 2011 (has links)
Le district de Litsa est une région de la Péninsule de Kola particulièrement prometteuse pour la métallogénie de l'uranium. Présentant toutes les caractéristiques d'une province métallifère, ce district a enregistré une histoire géologique complexe avec des enrichissements successifs en uranium. Trente anomalies uranifères y sont observées, estimées à 102 000 tonnes (IAEA nomenclature), pour une teneur moyenne de 0,01%. Elles sont encaissées dans différentes formations de niveau structural et d'âge différents, depuis l'Archéen jusqu'au Calédonien. La minéralisation présentant les teneurs en uranium les plus économiques sont des veines de pechblende observées autour du complexe granitique de Litsa-Araguba, où sont présents des protolites, des structures et des phénomènes épigénétiques favorables / The Litsa district is one of the most interesting areas of the Kola Peninsula with respect to uranium metallogenesis. Presenting all the features of uraniferous province, it endured a protracted geological history with several successive uranium enrichments. There are over 30 uranium occurrences and manifestations, totally estimated at 102,000 tons in Speculative Resources (IAEA nomenclature), with an average grade of Uranium 0.01%. They occur at different stratigraphic levels of the geological succession in the district: Archean, Paleoproterozoic, Mesoproterozoic and Paleozoic. Uranium content in the geological formations gradually increases during the geological evolution of the Litsa district from Archean to Paleozoic. The most abundant and probably prospective for the economic-grade uranium mineralization is Paleozoic pitchblende vein type, located around the Litsa-Araguba granitoid complex, where favorable protoliths, structures and epigenetic processes are encountered
5

Processos metalogenéticos em ambientes de arco magmático tipo andino, caso de estudo: mineralizações da região dos Andes Patagônicos setentrionais do Chile / Metallogenic processes in andean volcanic arc setting, study case: mineralizations in the Chilean North-Patagonion Andes

Duhart Oyarzo, Paul Luis 29 July 2008 (has links)
Na região dos Andes Patagônicos entre os 41 a 44° S estão expostos amplos e contínuos afloramentos de rochas graníticas do segmento norte do Batólito Norte-Patagônico (BNP). Durante sua evolução a maior parte das rochas graníticas foram colocadas em rochas metamórficas, e outras partes foram colocadas em rochas vulcânicas do Jurássico-Berriasano, sedimentares e vulcânicas do Cretáceo Inferior, vulcânicas do Cretáceo Superior e sedimentares do Mioceno. Parte desta atividade magmática está associada à gênese de depósitos de minério. As rochas plutônicas expostas apresentam uma gradação desde dioritos até granitos e leucogranitos, apesar de que a área é largamente dominada por variedades intermediárias a ácidas. Determinações K-Ar permitiram identificar extensos e volumosos eventos plutônicos que descrevem duas faixas de orientação N-S durante o Cretáceo Inferior (ca. 120-100 Ma) e Mioceno (ca. 20-7 Ma), discretos durante o Jurássico Superior (ca. 155 Ma) e o Cretáceo Superior (ca. 95-70 Ma), restritos durante o Plioceno (ca. 5-3 Ma), e um provável evento plutônico no Eoceno (ca. 54-34 Ma), ao passo que experimentos Ar/Ar confirmam os eventos magmáticos do Cretáceo Inferior (ca. 126-100 Ma) e Mioceno (ca. 19-9 Ma). Determinações U-Pb convencionais indicam a provável perda e herança de Pb, apesar de confirmar os eventos magmáticos do Cretáceo Inferior (ca.129-114 Ma) e Mioceno (ca. 22-13 Ma). Além disso, as determinações U-Pb convencionais em zircões revelam a presença de rochas magmáticas pré-Andinas do Devoniano Inferior (ca. 400 Ma) provavelmente relacionadas com rochas do Maciço Norte-Patagônico. Determinações U-Pb SHRIMP em zircões indicam 110,0±9,6 Ma para um monzogranito e de 126,3±6,7 Ma para um piroxênio dioritio, 8,4±0,3 Ma para um tonalito e 13,26±0,19 Ma para um andesito porfirítico, e de 385,9±7,4 Ma para um corpo de microdiorito tectonizado. Estes dados indicam que o início da atividade plutônica é representada em ambos das faixas por pequenos corpos de colocação superficial, e a idade U-Pb SHRIMP do Devoniano confirma o evento magmático inferido das idades U-Pb convencionais. A distribuição de idades mostra um padrão complexo, mas, permite definir eventos magmáticos do Cretáceo, preferencialmente localizados, a E da Zona de Falha Liquiñe-Ofqui (ZFLO), do Mioceno no interior e a O desta estrutura, e do Plioceno no traço principal da ZFLO. A atividade plutônica do Mioceno, em direção a trincheira é diferente que o padrão definido para a região centro-norte dos Andes chilenos, onde é verificada a migração do arco magmático para a E com a conseqüente diminuição de idades neste sentido. Composições isotópicas de Sr e Nd mostram baixos e positivos teores de Nd com Sr entre -4 e +7 sugerindo que o BNP no segmento estudado, foi composto a partir de mistura de matérias do manto com fusão de crosta inferior, como é demonstrado pelos trabalhos anteriores, em áreas vizinhas. As composições isotópicas de Pb em feldspato, das mesmas amostras datadas por U-Pb convencional, variou com a idade, plútons com 206Pb/204Pb >18,62 são do Mioceno, enquanto que aqueles plútons com 206Pb/204Pb <18,57 são do Cretáceo, com uma relação inversa entre os plútons do Mioceno, o que é atribuído à variável interação com o embasamento metamórfico. Mineralizações de metais base com Au e Ag estão hospedadas em rochas vulcânicas do Cretáceo e limitadas à faixa magmática do Cretáceo Inferior e mineralizações de Au-As estão hospedadas no Microdiorito do Devoniano e em rochas metamórficas do Paleozóico e limitadas à faixa magmática do Mioceno. Além disso, em ambos as faixas, ocorrências de Cu-Mo são relatadas associadas com monzogranitos e tonalitios. Mineralizações de metais preciosos e de base no prospecto Las Juntas estão relacionados com alteração silíca-adularia e quartzo-sericita e deposição de pirita, esfalerita, galena com conteúdos de Ag e Bi, e calcopirita, e menor hematita, tetraedrite, arsenopirita, bornita e calcocita, em veios, vênulas, brechas e escassa disseminação. Os teores são variáveis, mas em veios mineralizados em Cu os teores podem atingir até 15% Cu, e em brechas mineralizadas em Cu-Pb-Zn os teores podem atingir até 32% Pb, 23% Zn e 0,28% Cu, com 1,4 para 1.300 ppm de Ag e 0,02 para 3,9 ppm de Au. Dados de inclusões fluidas indicam temperaturas de homogeneização variando entre 140 a 230º C, salinidades entre 3 a 6% em peso de NaCl equiv., e de deposição de metais base durante ebulição e mistura. Mineralizações de Au-As no prospecto Pichicolo estão relacionadas com alteração silíca e quartzo-sericita e deposição de arsenopirita e pirita, e menor pirrotita, calcopirita e bornita, em vênulas, stockwork e disseminação. Os teores variam entre 0,02 a 2,0 ppm de Au. Dados de inclusões fluidas indicam temperaturas de homogeneização entre 180 a 270º C, salinidades entre de 3 a 5% em peso de NaCl equiv., e deposição metálica durante ebulição e mistura. A mineralização, alteração e as características químicas e físicas de fluidos sugerem para ambos os prospectos características de epitermais de baixa sulfetação. O método Re-Os foi utilizado em molibdenitas hospedadas em plútons de monzogranito e tonalito para determinar a idade da mineralização de Cu-Mo. As idades obtidas (ca. 119 e 9,1 a 8,2 Ma) sugerem que a mineralização ocorreu em sistemas hidrotermais intimamente associada com os eventos magmáticos de Cretáceo Inferior e Mioceno, o que confirma a interpretação acerca da existência das faixas metalogéneticas polimetálicas do Cretáceo Inferior e aurífera do Mioceno propostas para a Cordilheira Norte-Patagônica. Biotita do monzogranito hospedeiro de mineralizaçao de Cu-Mo na aldeia Palena foi datada por Ar/Ar em 114,7 Ma, e outra datação, próxima da ocorrência, em 114,2 Ma. Biotita do tonalito hospedeiro da mineralização de Cu-Mo no estuário Reloncaví foi datada por Ar/Ar em 8,53 Ma, e outra datação, próxima da ocorrência, em 8,64 Ma. A proximidade e a superposição, dentro do erro analítico, entre as idades Ar/Ar em biotita, em ambas as áreas, sugerem que a alteração hidrotemal não foi estendida. Uma idade isocrônica Rb-Sr de 126±8 Ma obtida de rochas hidrotermalmente alteradas com mineralização polimetálica é interpretada como a idade do evento hidrotermal. Experimentos Ar/Ar em sericita hidrotemal de granulação muito fina com mineralização de Au-As mostra redistribuição de Ar por \'recoil\' e a idade integrada de 142±2 Ma sugere que a associação mineralização- magmatismo félsico do Jurássico não deve ser descartada. Composições isotópicas de Sr e Nd de rochas hospedeiras e ígneas associadas indicam que os magmas são principalmente derivados do manto com contaminação de crosta continental variável. Composições isotópicas de Pb em minerais de minério, rochas hospedeiras e ígneas associadas, em ambos os prospectos, se agrupam próximos da curva do orógeno no modelo da \'plumbotectonica\'. Em um diagrama 206Pb/204Pb-207Pb/204Pb, os minerais de minério e as rochas ígneas associados do prospecto Las Juntas são menos radiogênicos (206Pb/204Pb <18.6) que o prospecto Pichicolo (206Pb/204Pb >18.6). Este modelo é compatível com a idade absoluta cretácea da mineralização para Las Juntas e com a idade miocena assumida para Pichicolo. As tendências alongadas da composição de Pb nos minerais de minério indicam, principalmente, um modelo orogênico, sugerindo mistura variável de chumbo a partir de diferentes fontes, sobretudo de crosta superior. / In the Patagonian Andes region between 41 and 44° S extensive and continuous plutonic rocks of the North-Patagonian Batholith north segment are exposed. During their evolution most of the granitic rocks were emplaced in metamorphic rocks and other parts were emplaced in Late Jurassic-Berriasan volcanic rocks, Early Cretaceous sedimentary and volcanic rocks, Late Cretaceous volcanic rocks and Miocene sedimentary rocks. Part of this magmatic activity is associated with ore deposit genesis. The exposed plutonic rocks range mainly from diorites to granites and leucogranites, although the area is extensively dominated by intermediate to acid varieties. K-Ar determinations have allowed identification of extensive and voluminous plutonic events which describe two N-S oriented belts during the late Lower Cretaceous (ca. 120-100 Ma) and Miocene (ca. 20-7 Ma), discreet during the Upper Jurassic (ca. 155 Ma) and the Upper Cretaceous (ca. 95-70 Ma), restricted during the early Pliocene (ca. 5-3 Ma) and a probable plutonism in Eocene times (ca. 54-34 Ma), while Ar/Ar experiments confirm the late Lower Cretaceous (ca. 126-100 Ma) and Miocene (ca. 19-9 Ma) magmatic events. Conventional U-Pb determinations indicate the probable inheritance and loss of Pb, although they confirm the late Lower Cretaceous (ca. 129-114 Ma) and Miocene (ca. 22-13 Ma) magmatic events. In addition, the zircons conventional U-Pb determinations show the presence of pre-Andean Lower Devonian magmatic rocks (ca. 400 Ma) probably linked with rocks of the North- Patagonian Massif. Zircon U-Pb SHRIMP determinations indicate 110.0±9.6 Ma for a monzogranitic pluton and 126.3±6.7 Ma for a pyroxene dioritic stock, 8.4±0.3 Ma for a tonalitic pluton and 13.26±0.19 Ma for hornblende andesitic porphyry, and 385.9±7.4 Ma for a tectonized microdioritic body. These data indicate that the early plutonic activity is represented, in Mesozoic and Cenozoic belts, by basic to intermediate small bodies of shallow emplacement, and the SHRIMP U-Pb Devonian age confirms a magmatic event previously inferred by conventional U-Pb ages. The age distribution shows a complex pattern, which nevertheless allows, magmatic Cretaceous events to be located, preferably, to the E of the Liquiñe-Ofqui Fault Zone, magmatic Miocene events located in and to the W of this structure, and magmatic Pliocene events located in the main branch of the Liquiñe-Ofqui Fault Zone to be defined. The Miocene plutonic activity towards the trench is different to the defined pattern for the north-central Chilean Andes, where the magmatic arc migration to the E and the consequent age diminution in this same direction is verified. Nd and Sr isotopic compositions show low and positive Nd values together with Sr between -4 and +7 suggesting that the North-Patagonian Batholith in the studied segment, has been composed from mixing of mantle derived or mafic lithospheric material with melting of lower continental crust, as is shown by previous work in neighboring areas. The Pb isotopic compositions in feldspar, of the same dating samples by U-Pb conventional method, varied with the age, plutons with 206Pb/204Pb greater than 18.62 are Miocene, whereas those plutons with 206Pb/204Pb less than 18.57 are Cretaceous, with an inverse relation between Miocene plutons, which is attributed to varying interaction grade with the metamorphic basement. Metal base-mineralization with Au and Ag contains are hosted in Cretaceous volcanic rocks and restricted to the Lower Cretaceous magmatic belt and Au-As mineralization are hosted in Devonian microdiorite and Paleozoic metamorphic rocks and restricted to the Miocene magmatic belt. Also, in both belts Cu-Mo occurrences are reported in associated with monzogranites and tonalities, respectively. Metal base and precious mineralizations in the Las Juntas Prospect are related to silicicadularia and quartz-sericite alteration and deposition of pyrite, sphalerite, Ag-bearing and Bi-bearing galena, and chalcopyrite, and minor hematite, tetrahedrite, arsenopyrite, bornite and chalcocite, in vein, veinlets and minor breccia bodies, and scarce dissemination. Ore grades are variable, but in mineralized Cu-veins the values reach up 15% Cu, and in Pb-Zn-Cu breccias the values reach up 32% Pb, 23% Zn and 0.28% Cu, 1.4 to 1,300 ppm Ag and 0.02 to 3.9 ppm Au. Fluid inclusion data indicate homogenization temperatures varying between 140 to 230 ºC, salinities ranging from 3 to 6 weight % NaCl equivalent, and metal base deposition during boiling and mixing events. Asmineralizations with gold contain in the Pichicolo Prospect are related to silicic and quartz-sericite alterations and deposition of arsenopyrite and pyrite, and minor pyrrotite, chalcopyrite and bornite, in veinlets, stockwork and dissemination. Grades vary between 0.02 to 2.0 ppm Au. Fluid inclusion data indicate homogenization temperatures varying between 180 to 270 ºC, salinities ranging from 3 to 5 weight % NaCl equivalent, and metallic deposition during boiling and mixing events. The mineralization, alteration and the chemical and physical fluid characteristics suggest for both studied prospects epithermal low-sulphidation features. Re-Os method in molybdenites hosted in monzogranitic and tonalitic plutons have been used to determine timing of Cu-Mo mineralizations. The obtained ages (ca. 119 and 9.1 to 8.2 Ma) suggest that the mineralization occurred in hydrothermal systems closely associated with late Lower Cretaceous and Miocene plutonic events, which confirm the interpretation about the existence of Lower Cretaceous and Miocene metallogenic belts proposed for the North-Patagonian Cordillera. Biotite of the monzogranitic host rock directly related with the Palena village molybdenite mineralization was dated by Ar/Ar in 114.7 Ma, and near of the occurrence in 114.2 Ma. Biotite of the tonalite host rock directly related with the Reloncaví estuary molybdenite mineralization was dated by Ar/Ar in 8.53 Ma and near of the occurrence in 8.64 Ma. The proximity, and superposition within the analytical error, between the Ar/Ar biotite ages, in both areas, suggests non extended hydrothermal alteration. Rb-Sr isochron age of 126±8 Ma obtained from hydrothermally alterated rocks in a polymetallic prospect is interpreted as the age of the hydrothermal event. Ar/Ar step-heating experiments in hydrothermal very fine grain sericite from Au-As mineralization shown Ar-redistribution by recoil effect and the integrated age of 142±2 Ma suggest that the association mineralization-Jurassic volcanic felsic magmatism should not be discarded. Sr and Nd isotopic compositions of the host and igneous-related mineralization rocks indicate that magmas are mainly mantle derived with variable little crustal contamination. Pb isotopic compositions of the ore minerals, host and igneous-related mineralization rocks in both prospect clusters near of the orogene curve within a plumbotectonic model. On 206Pb/204 versus 207Pb/204Pb plot, the ore minerals and the associated igneous units of the Las Juntas prospect are less radiogenic (206Pb/204Pb <18.6) that the Pichicolo prospect (206Pb/204Pb >18.6). This model is compatible with the absolute Cretaceous mineralization-age determined for the Las Juntas prospect and with the constraint Miocene mineralization-age for the Pichicolo prospect. The elongate trends of the ore minerals in the general clusters indicate mainly an orogenic model fit, suggesting variable mixing of lead from different sources, mainly from upper crust.
6

Múltiplos estágios de alteração hidrotermal do depósito de óxido de ferro-cobre-ouro Furnas, Província Carajás: evolução paragenética e química mineral. / not available

Silvandira dos Santos Góes Pereira de Jesus 18 November 2016 (has links)
A Província Mineral de Carajás, situada a sudeste do Cráton Amazônico, concentra a maior parte dos depósitos de óxido de ferro-cobre-ouro (IOCG) de alta tonelagem do mundo. Apesar da grande quantidade de estudos geocronológicos, os atributos geológicos, assinaturas isotópicas e fatores responsáveis pela formação dessas grandes reservas minerais ainda são pouco compreendidos. O depósito Furnas (500 Mt @ 0,7% Cu) constitui um trend mineralizado de direção WNW-ESSE, com 9 km de extensão, situado na Falha Transcorrente do Cinzento. Apresenta expressiva relação espacial com dois corpos graníticos: o granito Cigano, paleoproterozoico, aflorante a leste, e o granito Furnas, de idade incerta e mais preservado da alteração hidrotermal apenas a oeste do depósito. As rochas hospedeiras são representadas por andalusita-muscovita-biotita xisto com estaurolita na zona de lapa e por anfibólio-granadabiotita xisto na zona de capa. A paragênese metamórfica do anfibólio-granada-biotita xisto é representada por núcleos de Fe-edenita com bordas hidrotermais de Fe-tschermakita, K-hastingsita, Fe-actinolita e K-Fesadaganaíta. Resquícios do granito Furnas, intensamente hidrotermalizados, são reconhecidos, com dificuldade, nos testemunhos de sondagem. Distintos estágios de alteração hidrotermal estão impressos nas rochas. O granito Furnas foi o único submetido à alteração sódica pervasiva inicial (albitização), sucedida por intensa silicificação, concomitante à milonitização e posterior alteração potássica (biotita), registradas, também, nas demais hospedeiras do depósito. Turmalinização posterior a concomitante à alteração potásica, foi sucedida pela cristalização de cristais milimétricos de almandina, comumente coalescentes, associados a frentes de alteração hidrotermal. O metassomatismo de ferro é representado pela formação de grunerita, seguida por cristalização de magnetita ao longo da xistosidade das rochas hospedeiras. Estágio hidrotermal tardio originou rochas grossas e isótropas a localmente foliadas, constituídas principalmente por K-hastingsita associada a halos externos de alteração clorítica e veios de quartzo, comumente mineralizados. Chamosita formada nesse estágio substituiu parcial a totalmente biotita, granada e anfibólios formados em estágios prévios. A mineralização, representada por calcopirita e bornita, ocorre em fronts de substituição nas rochas ricas em granada-grunerita-magnetita, em veios e vênulas interconectadas, configurando stockworks. Além disso, brechas com infill de sulfetos que contornam clastos constituídos por quartzo, possivelmente associado à eventos de silicificação prévios, são identificadas. Mineralização de cobre, subordinada e tardia, se associa a veios de quartzo-hastingsita-clorita-albita-carbonato, com texturas de preenchimento de espaços abertos, relacionados espacialmente às zonas de cloritização. As paragêneses reconhecidas nos distintos estágios, principalmente àquelas relacionadas à zona mineralizada, constituem uma assembleia de alta a moderada temperatura para o sistema hidrotermal relacionado à evolução do depósito Furnas. Os estilos de alteração relacionam-se a diferentes regimes deformacionais e níveis crustais, demonstrando sobreposição de eventos mineralizantes e de alteração em sistemas hidrotermais intermediários, tal qual o Furnas. / The Carajás Mineral Province, located at the southern portion of the Amazonian Craton, hosts great part of the high-grade iron-oxide-copper-gold deposits known in the world. Despite the significance of geochronological studies, the geologic features, isotopic signatures and processes responsible for the formation of these outstanding mineral resources is still poorly understood. The Furnas deposit (500 Mt @ 0.7% Cu) comprises a mineralized WNW-ESSE trend, with 9 km of extension, within the Cinzento Transcurrent Fault Zone. The deposit has notable spatial relationship with two granitic bodies: the Paleoproterozic Cigano granite, which outcrops at the east; and the Furnas granite, of uncertain age, that is well-preserved from the hydrothermal alteration only outcrops towards the west. The host rocks are represented by andalusite-muscovite-biotite schist with staurolite at the footwall and amphibole-garnet-biotite schist at the hanginwall zone. The metamorphic paragenesis of the amphibolegarnet-biotite schist is represented by Fe-edenite cores, which are rimmed by hydrothermal Fe-tschermakite, K-hastingsite, Fe-actinolite and K-Fe-sadaganaite. Relicts of the Furnas granite, highly hidrothermalized, can be barely recognized at the drillholes. Different stages of hydrothermal alteration are recognized in the Furnas Deposit. The Furnas granite underwent an early pervasive sodic alteration with albite. This was succeeded by intense silicification synchronous to milonitization, which was followed by potassic alteration with biotite, also recorded on the other host rocks. Turmalinization, later to coeval to potassic alteration, was followed by the crystallization of milimetric almandine crystals, generally coalescing, associated with hydrothermal alteration fronts. Iron metassomatism is represented by grunerite crystallization, followed by magnetite formation along the host rock foliation. A later hydrothermal stage originated coarse-grained rocks, isotropic to locally foliated, composed mainly of K-hastingsite associated with external haloes of clorite alteration and quartz veins, generally with copper mineralization. Chamosite, formed at this stage, replaced partial to totally biotite, garnet and amphiboles formed in previous hydrothermal alteration stages. Copper-gold mineralization is represented by chalcopyrite and bornite, which occur in replacement alteration fronts in the garnet-grunerite-magnetite-rich rocks, in veins, interconnected veinlets and stockworks. Besides that, breccias with sulfide infills that surround quartz clasts, probably associated with early silicification events, are also recognized. Late and subordinated copper mineralization is associated with quartz-hastingsite-chlorite-albite-carbonate veins with open-space filling textures that are spatially related to chlorite zones. The paragenesis of the distinct hydrothermal alteration stages, especially those related to the mineralized zone, constitute high to moderate temperature mineral assemblage formed in the Furnas hydrothermal system. Alteration styles are related with different deformation regimes and crustal levels, demonstrating overprinting of mineralizing and hydrothermal alteration events in intermediate hydrothermal systems, as the Furnas.
7

Múltiplos estágios de alteração hidrotermal do depósito de óxido de ferro-cobre-ouro Furnas, Província Carajás: evolução paragenética e química mineral. / not available

Jesus, Silvandira dos Santos Góes Pereira de 18 November 2016 (has links)
A Província Mineral de Carajás, situada a sudeste do Cráton Amazônico, concentra a maior parte dos depósitos de óxido de ferro-cobre-ouro (IOCG) de alta tonelagem do mundo. Apesar da grande quantidade de estudos geocronológicos, os atributos geológicos, assinaturas isotópicas e fatores responsáveis pela formação dessas grandes reservas minerais ainda são pouco compreendidos. O depósito Furnas (500 Mt @ 0,7% Cu) constitui um trend mineralizado de direção WNW-ESSE, com 9 km de extensão, situado na Falha Transcorrente do Cinzento. Apresenta expressiva relação espacial com dois corpos graníticos: o granito Cigano, paleoproterozoico, aflorante a leste, e o granito Furnas, de idade incerta e mais preservado da alteração hidrotermal apenas a oeste do depósito. As rochas hospedeiras são representadas por andalusita-muscovita-biotita xisto com estaurolita na zona de lapa e por anfibólio-granadabiotita xisto na zona de capa. A paragênese metamórfica do anfibólio-granada-biotita xisto é representada por núcleos de Fe-edenita com bordas hidrotermais de Fe-tschermakita, K-hastingsita, Fe-actinolita e K-Fesadaganaíta. Resquícios do granito Furnas, intensamente hidrotermalizados, são reconhecidos, com dificuldade, nos testemunhos de sondagem. Distintos estágios de alteração hidrotermal estão impressos nas rochas. O granito Furnas foi o único submetido à alteração sódica pervasiva inicial (albitização), sucedida por intensa silicificação, concomitante à milonitização e posterior alteração potássica (biotita), registradas, também, nas demais hospedeiras do depósito. Turmalinização posterior a concomitante à alteração potásica, foi sucedida pela cristalização de cristais milimétricos de almandina, comumente coalescentes, associados a frentes de alteração hidrotermal. O metassomatismo de ferro é representado pela formação de grunerita, seguida por cristalização de magnetita ao longo da xistosidade das rochas hospedeiras. Estágio hidrotermal tardio originou rochas grossas e isótropas a localmente foliadas, constituídas principalmente por K-hastingsita associada a halos externos de alteração clorítica e veios de quartzo, comumente mineralizados. Chamosita formada nesse estágio substituiu parcial a totalmente biotita, granada e anfibólios formados em estágios prévios. A mineralização, representada por calcopirita e bornita, ocorre em fronts de substituição nas rochas ricas em granada-grunerita-magnetita, em veios e vênulas interconectadas, configurando stockworks. Além disso, brechas com infill de sulfetos que contornam clastos constituídos por quartzo, possivelmente associado à eventos de silicificação prévios, são identificadas. Mineralização de cobre, subordinada e tardia, se associa a veios de quartzo-hastingsita-clorita-albita-carbonato, com texturas de preenchimento de espaços abertos, relacionados espacialmente às zonas de cloritização. As paragêneses reconhecidas nos distintos estágios, principalmente àquelas relacionadas à zona mineralizada, constituem uma assembleia de alta a moderada temperatura para o sistema hidrotermal relacionado à evolução do depósito Furnas. Os estilos de alteração relacionam-se a diferentes regimes deformacionais e níveis crustais, demonstrando sobreposição de eventos mineralizantes e de alteração em sistemas hidrotermais intermediários, tal qual o Furnas. / The Carajás Mineral Province, located at the southern portion of the Amazonian Craton, hosts great part of the high-grade iron-oxide-copper-gold deposits known in the world. Despite the significance of geochronological studies, the geologic features, isotopic signatures and processes responsible for the formation of these outstanding mineral resources is still poorly understood. The Furnas deposit (500 Mt @ 0.7% Cu) comprises a mineralized WNW-ESSE trend, with 9 km of extension, within the Cinzento Transcurrent Fault Zone. The deposit has notable spatial relationship with two granitic bodies: the Paleoproterozic Cigano granite, which outcrops at the east; and the Furnas granite, of uncertain age, that is well-preserved from the hydrothermal alteration only outcrops towards the west. The host rocks are represented by andalusite-muscovite-biotite schist with staurolite at the footwall and amphibole-garnet-biotite schist at the hanginwall zone. The metamorphic paragenesis of the amphibolegarnet-biotite schist is represented by Fe-edenite cores, which are rimmed by hydrothermal Fe-tschermakite, K-hastingsite, Fe-actinolite and K-Fe-sadaganaite. Relicts of the Furnas granite, highly hidrothermalized, can be barely recognized at the drillholes. Different stages of hydrothermal alteration are recognized in the Furnas Deposit. The Furnas granite underwent an early pervasive sodic alteration with albite. This was succeeded by intense silicification synchronous to milonitization, which was followed by potassic alteration with biotite, also recorded on the other host rocks. Turmalinization, later to coeval to potassic alteration, was followed by the crystallization of milimetric almandine crystals, generally coalescing, associated with hydrothermal alteration fronts. Iron metassomatism is represented by grunerite crystallization, followed by magnetite formation along the host rock foliation. A later hydrothermal stage originated coarse-grained rocks, isotropic to locally foliated, composed mainly of K-hastingsite associated with external haloes of clorite alteration and quartz veins, generally with copper mineralization. Chamosite, formed at this stage, replaced partial to totally biotite, garnet and amphiboles formed in previous hydrothermal alteration stages. Copper-gold mineralization is represented by chalcopyrite and bornite, which occur in replacement alteration fronts in the garnet-grunerite-magnetite-rich rocks, in veins, interconnected veinlets and stockworks. Besides that, breccias with sulfide infills that surround quartz clasts, probably associated with early silicification events, are also recognized. Late and subordinated copper mineralization is associated with quartz-hastingsite-chlorite-albite-carbonate veins with open-space filling textures that are spatially related to chlorite zones. The paragenesis of the distinct hydrothermal alteration stages, especially those related to the mineralized zone, constitute high to moderate temperature mineral assemblage formed in the Furnas hydrothermal system. Alteration styles are related with different deformation regimes and crustal levels, demonstrating overprinting of mineralizing and hydrothermal alteration events in intermediate hydrothermal systems, as the Furnas.
8

Processos metalogenéticos em ambientes de arco magmático tipo andino, caso de estudo: mineralizações da região dos Andes Patagônicos setentrionais do Chile / Metallogenic processes in andean volcanic arc setting, study case: mineralizations in the Chilean North-Patagonion Andes

Paul Luis Duhart Oyarzo 29 July 2008 (has links)
Na região dos Andes Patagônicos entre os 41 a 44° S estão expostos amplos e contínuos afloramentos de rochas graníticas do segmento norte do Batólito Norte-Patagônico (BNP). Durante sua evolução a maior parte das rochas graníticas foram colocadas em rochas metamórficas, e outras partes foram colocadas em rochas vulcânicas do Jurássico-Berriasano, sedimentares e vulcânicas do Cretáceo Inferior, vulcânicas do Cretáceo Superior e sedimentares do Mioceno. Parte desta atividade magmática está associada à gênese de depósitos de minério. As rochas plutônicas expostas apresentam uma gradação desde dioritos até granitos e leucogranitos, apesar de que a área é largamente dominada por variedades intermediárias a ácidas. Determinações K-Ar permitiram identificar extensos e volumosos eventos plutônicos que descrevem duas faixas de orientação N-S durante o Cretáceo Inferior (ca. 120-100 Ma) e Mioceno (ca. 20-7 Ma), discretos durante o Jurássico Superior (ca. 155 Ma) e o Cretáceo Superior (ca. 95-70 Ma), restritos durante o Plioceno (ca. 5-3 Ma), e um provável evento plutônico no Eoceno (ca. 54-34 Ma), ao passo que experimentos Ar/Ar confirmam os eventos magmáticos do Cretáceo Inferior (ca. 126-100 Ma) e Mioceno (ca. 19-9 Ma). Determinações U-Pb convencionais indicam a provável perda e herança de Pb, apesar de confirmar os eventos magmáticos do Cretáceo Inferior (ca.129-114 Ma) e Mioceno (ca. 22-13 Ma). Além disso, as determinações U-Pb convencionais em zircões revelam a presença de rochas magmáticas pré-Andinas do Devoniano Inferior (ca. 400 Ma) provavelmente relacionadas com rochas do Maciço Norte-Patagônico. Determinações U-Pb SHRIMP em zircões indicam 110,0±9,6 Ma para um monzogranito e de 126,3±6,7 Ma para um piroxênio dioritio, 8,4±0,3 Ma para um tonalito e 13,26±0,19 Ma para um andesito porfirítico, e de 385,9±7,4 Ma para um corpo de microdiorito tectonizado. Estes dados indicam que o início da atividade plutônica é representada em ambos das faixas por pequenos corpos de colocação superficial, e a idade U-Pb SHRIMP do Devoniano confirma o evento magmático inferido das idades U-Pb convencionais. A distribuição de idades mostra um padrão complexo, mas, permite definir eventos magmáticos do Cretáceo, preferencialmente localizados, a E da Zona de Falha Liquiñe-Ofqui (ZFLO), do Mioceno no interior e a O desta estrutura, e do Plioceno no traço principal da ZFLO. A atividade plutônica do Mioceno, em direção a trincheira é diferente que o padrão definido para a região centro-norte dos Andes chilenos, onde é verificada a migração do arco magmático para a E com a conseqüente diminuição de idades neste sentido. Composições isotópicas de Sr e Nd mostram baixos e positivos teores de Nd com Sr entre -4 e +7 sugerindo que o BNP no segmento estudado, foi composto a partir de mistura de matérias do manto com fusão de crosta inferior, como é demonstrado pelos trabalhos anteriores, em áreas vizinhas. As composições isotópicas de Pb em feldspato, das mesmas amostras datadas por U-Pb convencional, variou com a idade, plútons com 206Pb/204Pb >18,62 são do Mioceno, enquanto que aqueles plútons com 206Pb/204Pb <18,57 são do Cretáceo, com uma relação inversa entre os plútons do Mioceno, o que é atribuído à variável interação com o embasamento metamórfico. Mineralizações de metais base com Au e Ag estão hospedadas em rochas vulcânicas do Cretáceo e limitadas à faixa magmática do Cretáceo Inferior e mineralizações de Au-As estão hospedadas no Microdiorito do Devoniano e em rochas metamórficas do Paleozóico e limitadas à faixa magmática do Mioceno. Além disso, em ambos as faixas, ocorrências de Cu-Mo são relatadas associadas com monzogranitos e tonalitios. Mineralizações de metais preciosos e de base no prospecto Las Juntas estão relacionados com alteração silíca-adularia e quartzo-sericita e deposição de pirita, esfalerita, galena com conteúdos de Ag e Bi, e calcopirita, e menor hematita, tetraedrite, arsenopirita, bornita e calcocita, em veios, vênulas, brechas e escassa disseminação. Os teores são variáveis, mas em veios mineralizados em Cu os teores podem atingir até 15% Cu, e em brechas mineralizadas em Cu-Pb-Zn os teores podem atingir até 32% Pb, 23% Zn e 0,28% Cu, com 1,4 para 1.300 ppm de Ag e 0,02 para 3,9 ppm de Au. Dados de inclusões fluidas indicam temperaturas de homogeneização variando entre 140 a 230º C, salinidades entre 3 a 6% em peso de NaCl equiv., e de deposição de metais base durante ebulição e mistura. Mineralizações de Au-As no prospecto Pichicolo estão relacionadas com alteração silíca e quartzo-sericita e deposição de arsenopirita e pirita, e menor pirrotita, calcopirita e bornita, em vênulas, stockwork e disseminação. Os teores variam entre 0,02 a 2,0 ppm de Au. Dados de inclusões fluidas indicam temperaturas de homogeneização entre 180 a 270º C, salinidades entre de 3 a 5% em peso de NaCl equiv., e deposição metálica durante ebulição e mistura. A mineralização, alteração e as características químicas e físicas de fluidos sugerem para ambos os prospectos características de epitermais de baixa sulfetação. O método Re-Os foi utilizado em molibdenitas hospedadas em plútons de monzogranito e tonalito para determinar a idade da mineralização de Cu-Mo. As idades obtidas (ca. 119 e 9,1 a 8,2 Ma) sugerem que a mineralização ocorreu em sistemas hidrotermais intimamente associada com os eventos magmáticos de Cretáceo Inferior e Mioceno, o que confirma a interpretação acerca da existência das faixas metalogéneticas polimetálicas do Cretáceo Inferior e aurífera do Mioceno propostas para a Cordilheira Norte-Patagônica. Biotita do monzogranito hospedeiro de mineralizaçao de Cu-Mo na aldeia Palena foi datada por Ar/Ar em 114,7 Ma, e outra datação, próxima da ocorrência, em 114,2 Ma. Biotita do tonalito hospedeiro da mineralização de Cu-Mo no estuário Reloncaví foi datada por Ar/Ar em 8,53 Ma, e outra datação, próxima da ocorrência, em 8,64 Ma. A proximidade e a superposição, dentro do erro analítico, entre as idades Ar/Ar em biotita, em ambas as áreas, sugerem que a alteração hidrotemal não foi estendida. Uma idade isocrônica Rb-Sr de 126±8 Ma obtida de rochas hidrotermalmente alteradas com mineralização polimetálica é interpretada como a idade do evento hidrotermal. Experimentos Ar/Ar em sericita hidrotemal de granulação muito fina com mineralização de Au-As mostra redistribuição de Ar por \'recoil\' e a idade integrada de 142±2 Ma sugere que a associação mineralização- magmatismo félsico do Jurássico não deve ser descartada. Composições isotópicas de Sr e Nd de rochas hospedeiras e ígneas associadas indicam que os magmas são principalmente derivados do manto com contaminação de crosta continental variável. Composições isotópicas de Pb em minerais de minério, rochas hospedeiras e ígneas associadas, em ambos os prospectos, se agrupam próximos da curva do orógeno no modelo da \'plumbotectonica\'. Em um diagrama 206Pb/204Pb-207Pb/204Pb, os minerais de minério e as rochas ígneas associados do prospecto Las Juntas são menos radiogênicos (206Pb/204Pb <18.6) que o prospecto Pichicolo (206Pb/204Pb >18.6). Este modelo é compatível com a idade absoluta cretácea da mineralização para Las Juntas e com a idade miocena assumida para Pichicolo. As tendências alongadas da composição de Pb nos minerais de minério indicam, principalmente, um modelo orogênico, sugerindo mistura variável de chumbo a partir de diferentes fontes, sobretudo de crosta superior. / In the Patagonian Andes region between 41 and 44° S extensive and continuous plutonic rocks of the North-Patagonian Batholith north segment are exposed. During their evolution most of the granitic rocks were emplaced in metamorphic rocks and other parts were emplaced in Late Jurassic-Berriasan volcanic rocks, Early Cretaceous sedimentary and volcanic rocks, Late Cretaceous volcanic rocks and Miocene sedimentary rocks. Part of this magmatic activity is associated with ore deposit genesis. The exposed plutonic rocks range mainly from diorites to granites and leucogranites, although the area is extensively dominated by intermediate to acid varieties. K-Ar determinations have allowed identification of extensive and voluminous plutonic events which describe two N-S oriented belts during the late Lower Cretaceous (ca. 120-100 Ma) and Miocene (ca. 20-7 Ma), discreet during the Upper Jurassic (ca. 155 Ma) and the Upper Cretaceous (ca. 95-70 Ma), restricted during the early Pliocene (ca. 5-3 Ma) and a probable plutonism in Eocene times (ca. 54-34 Ma), while Ar/Ar experiments confirm the late Lower Cretaceous (ca. 126-100 Ma) and Miocene (ca. 19-9 Ma) magmatic events. Conventional U-Pb determinations indicate the probable inheritance and loss of Pb, although they confirm the late Lower Cretaceous (ca. 129-114 Ma) and Miocene (ca. 22-13 Ma) magmatic events. In addition, the zircons conventional U-Pb determinations show the presence of pre-Andean Lower Devonian magmatic rocks (ca. 400 Ma) probably linked with rocks of the North- Patagonian Massif. Zircon U-Pb SHRIMP determinations indicate 110.0±9.6 Ma for a monzogranitic pluton and 126.3±6.7 Ma for a pyroxene dioritic stock, 8.4±0.3 Ma for a tonalitic pluton and 13.26±0.19 Ma for hornblende andesitic porphyry, and 385.9±7.4 Ma for a tectonized microdioritic body. These data indicate that the early plutonic activity is represented, in Mesozoic and Cenozoic belts, by basic to intermediate small bodies of shallow emplacement, and the SHRIMP U-Pb Devonian age confirms a magmatic event previously inferred by conventional U-Pb ages. The age distribution shows a complex pattern, which nevertheless allows, magmatic Cretaceous events to be located, preferably, to the E of the Liquiñe-Ofqui Fault Zone, magmatic Miocene events located in and to the W of this structure, and magmatic Pliocene events located in the main branch of the Liquiñe-Ofqui Fault Zone to be defined. The Miocene plutonic activity towards the trench is different to the defined pattern for the north-central Chilean Andes, where the magmatic arc migration to the E and the consequent age diminution in this same direction is verified. Nd and Sr isotopic compositions show low and positive Nd values together with Sr between -4 and +7 suggesting that the North-Patagonian Batholith in the studied segment, has been composed from mixing of mantle derived or mafic lithospheric material with melting of lower continental crust, as is shown by previous work in neighboring areas. The Pb isotopic compositions in feldspar, of the same dating samples by U-Pb conventional method, varied with the age, plutons with 206Pb/204Pb greater than 18.62 are Miocene, whereas those plutons with 206Pb/204Pb less than 18.57 are Cretaceous, with an inverse relation between Miocene plutons, which is attributed to varying interaction grade with the metamorphic basement. Metal base-mineralization with Au and Ag contains are hosted in Cretaceous volcanic rocks and restricted to the Lower Cretaceous magmatic belt and Au-As mineralization are hosted in Devonian microdiorite and Paleozoic metamorphic rocks and restricted to the Miocene magmatic belt. Also, in both belts Cu-Mo occurrences are reported in associated with monzogranites and tonalities, respectively. Metal base and precious mineralizations in the Las Juntas Prospect are related to silicicadularia and quartz-sericite alteration and deposition of pyrite, sphalerite, Ag-bearing and Bi-bearing galena, and chalcopyrite, and minor hematite, tetrahedrite, arsenopyrite, bornite and chalcocite, in vein, veinlets and minor breccia bodies, and scarce dissemination. Ore grades are variable, but in mineralized Cu-veins the values reach up 15% Cu, and in Pb-Zn-Cu breccias the values reach up 32% Pb, 23% Zn and 0.28% Cu, 1.4 to 1,300 ppm Ag and 0.02 to 3.9 ppm Au. Fluid inclusion data indicate homogenization temperatures varying between 140 to 230 ºC, salinities ranging from 3 to 6 weight % NaCl equivalent, and metal base deposition during boiling and mixing events. Asmineralizations with gold contain in the Pichicolo Prospect are related to silicic and quartz-sericite alterations and deposition of arsenopyrite and pyrite, and minor pyrrotite, chalcopyrite and bornite, in veinlets, stockwork and dissemination. Grades vary between 0.02 to 2.0 ppm Au. Fluid inclusion data indicate homogenization temperatures varying between 180 to 270 ºC, salinities ranging from 3 to 5 weight % NaCl equivalent, and metallic deposition during boiling and mixing events. The mineralization, alteration and the chemical and physical fluid characteristics suggest for both studied prospects epithermal low-sulphidation features. Re-Os method in molybdenites hosted in monzogranitic and tonalitic plutons have been used to determine timing of Cu-Mo mineralizations. The obtained ages (ca. 119 and 9.1 to 8.2 Ma) suggest that the mineralization occurred in hydrothermal systems closely associated with late Lower Cretaceous and Miocene plutonic events, which confirm the interpretation about the existence of Lower Cretaceous and Miocene metallogenic belts proposed for the North-Patagonian Cordillera. Biotite of the monzogranitic host rock directly related with the Palena village molybdenite mineralization was dated by Ar/Ar in 114.7 Ma, and near of the occurrence in 114.2 Ma. Biotite of the tonalite host rock directly related with the Reloncaví estuary molybdenite mineralization was dated by Ar/Ar in 8.53 Ma and near of the occurrence in 8.64 Ma. The proximity, and superposition within the analytical error, between the Ar/Ar biotite ages, in both areas, suggests non extended hydrothermal alteration. Rb-Sr isochron age of 126±8 Ma obtained from hydrothermally alterated rocks in a polymetallic prospect is interpreted as the age of the hydrothermal event. Ar/Ar step-heating experiments in hydrothermal very fine grain sericite from Au-As mineralization shown Ar-redistribution by recoil effect and the integrated age of 142±2 Ma suggest that the association mineralization-Jurassic volcanic felsic magmatism should not be discarded. Sr and Nd isotopic compositions of the host and igneous-related mineralization rocks indicate that magmas are mainly mantle derived with variable little crustal contamination. Pb isotopic compositions of the ore minerals, host and igneous-related mineralization rocks in both prospect clusters near of the orogene curve within a plumbotectonic model. On 206Pb/204 versus 207Pb/204Pb plot, the ore minerals and the associated igneous units of the Las Juntas prospect are less radiogenic (206Pb/204Pb <18.6) that the Pichicolo prospect (206Pb/204Pb >18.6). This model is compatible with the absolute Cretaceous mineralization-age determined for the Las Juntas prospect and with the constraint Miocene mineralization-age for the Pichicolo prospect. The elongate trends of the ore minerals in the general clusters indicate mainly an orogenic model fit, suggesting variable mixing of lead from different sources, mainly from upper crust.
9

Geochemical exploration for polymetallic ores in volcano-sedimentary rocks:studies in China and Finland

Zhang, X. (Xiping) 20 November 2000 (has links)
Abstract A comparison between the two very important sulfide belts Raahe-Ladoga Ore Zone (RLZ) in Finland and Southern Edge of Altay (SEA) in China, including geological setting, metallogenic characters and geochemical exploration has been made. The two sulfide belts share similarities but differ from each other in the tectonic setting and metallogenic epoch. Polymetallic ores in RLZ and SEA are the products of the submarine volcanism, but mainly Zn-Cu type is present in RLZ and Pb-Zn, Cu-Pb-Zn and Cu-Zn types occur in SEA. A main Ni-Cu ore belt related to the mafic-ultramafic intrusions is also present in the RLZ. RLZ is metamorphosed to a higher grade than SEA. The Viholanniemi Zn-Au deposit is a veinlet-disseminated type, possibly beneath the stratabound sulphide ores, and the Keketale Pb-Zn deposit is a stratabound sulphide ore hosted by sedimentary rocks in the volcano-sedimentary formation. They show many differences. It is suggested that stratabound sulphide ores overlie stratigraphically the Viholanniemi stringer ores and Au-bearing stringers underlie the Keketale stratabound ores. Geochemical explorations of the two deposits exhibit different methods, subjects and procedures. Boulder tracing and till geochemical exploration proved to be very effective in finding the Viholanniemi deposit while stream sediment and soil geochemical surveys were the major and effective tools in finding the Keketale deposit. An extensional environment and the intensity of volcanism are the essential conditions for the formation of polymetallic ores related to the volcanism. It is feasible to classify the ores into the ores hosted by volcanics and sedimentary rocks in a volcano-sedimentary formation. The stratigraphical thickness of volcanic rocks and the amount of agglomerates are the two most crucial factors needed to be considered in prospecting. The chemical variations of the host rocks can indicate the sulphide ores hosted by sedimentary rocks in some circumstances.
10

Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids and their skarn mineralization in the Nanling Range, South China : the Tongshanling and Weijia deposits / Les granitoïdes du jurassique moyen et les skarns à Cu-Pb-Zn et à W associées dans la région de Nanling (Chine du Sud) : les gisements de Tongshanling et de Weijia

Huang, Xu-Dong 28 October 2018 (has links)
Les granitoïdes associés aux skarn à Cu-Pb-Zn et au W, dérivent, respectivement, de la fusion partiellede roches mafiques à amphiboles dans la croute inférieure et de roches métas-édimentaires riches enmuscovite dans la croute moyenne-supérieure. Ces sources fertiles mobilisées pour la formation de cesplutons a permis la formation de gisements à Cu-Pb-Zn, et W au cours du Jurassique moyen. L’originedans la croûte moyenne de la granodiorite de Tongshanling, associée aux minéralisations à Cu-Pb-Zn, aété montrée par l’étude des enclaves microgranulaires dioritiques qui sont des restites remaniées issuesde la fusion partielle des amphibolites de la croûte inférieure. Le Cu et le Zn associées à ces plutons sontprobablement issus de la croûte inférieure et ces métaux ont probablement étés remobilisés au cours dela fusion partielle. Le Pb issue de la croute supérieur a été collecté lors de l’ascension du magma qui adonné la granodiorite. Lors de leur mise en place ces granitoïdes ont exprimé leur potentielminéralisateur. L’étude structural montre que la géométrie des corps minéralisés et en lien avec ladéformation induite par la mise en place des plutons. Les différentes expressions de la minéralisationdans le district à Cu-Mo-Pb-Zn-Ag de Tongshanling sont génétiquement lié à l’hydrothermalisme et à sonévolution lors du développement du skarn. Le granite de Weijia a cristallisé à partir d’un magma saturéen eau et riche en Fluor. Les facteurs qui ont contrôlé la formation de ce skarn magnésien riche en W,suppose l’existence d’une source enrichie en W dans les sources métasédimentaires et d’un magmariche en Fluor très différentia par cristallisation fractionnée. / The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range were mainlyderived from non-simultaneous partial melting of the mafic amphibolitic rocks in the lower crust and themuscovite-rich metasedimentary rocks in the upper-middle crust, respectively. The fertile sources in theNanling Range are beneficial to the formation of Cu-Pb-Zn and W deposits during Middle-Late Jurassic.The lower-crust origin of the Cu-Pb-Zn-bearing granodiorites is further demonstrated by the dioriticmicrogranular enclaves in the Tongshanling granodiorite which are reworked restite enclaves derivedfrom partial melting of the mafic amphibolitic source. The Cu and Zn associated with these intrusionswere most probably released from the mafic amphibolitic lower crust by partial melting, whereas, Pb wasextracted from the upper crust by ascending granodioritic magmas. The emplacement of these orebearinggranitoid magmas may have a structural connection with the subsequent polymetallicmineralization in some way. For instance, the exoskarn and sulfide-quartz veins in the Tongshanling Cu-Pb-Zn deposit are evidently controlled by magma emplacement-induced wall-rock deformation. Thedifferent mineralization types and ore deposits in the Tongshanling Cu-Mo-Pb-Zn-Ag ore district aregenetically linked together in the same skarn system as the productions of evolution and zonation. TheWeijia granite was crystallized from a F-rich and water-saturated magma. The key factors controlling theoccurrence of unusual magnesian skarn W mineralization during Late Jurassic in the Nanling Rangemainly include a W enriched metasedimentary source, a fluorine-rich magma, a strong crystalfractionation, and a fluorine-rich hydrosaline melt

Page generated in 0.2635 seconds