• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modulation of N-methyl-D-aspartate receptors by Gαs- and Gαi/o-coupled receptors

Trepanier, Catherine Helene 07 January 2013 (has links)
The induction of synaptic plasticity at CA1 synapses requires NMDAR activation. Modulation of NMDAR function by various GPCRs can shift the thresholds for LTP and LTD induction and contribute to metaplasticity. Here we showed that the activity of GluN2A- and GluN2B-containing NMDARs is differentially regulated by Gαi/o-coupled, Gαq- and Gαs-coupled receptors. Furthermore, enhancing the relative function of GluN2A-to-GluNB NMDAR activity by GPCRs can alter the balance of LTP and LTD induction and contribute to metaplasticity. In CA1 neurons, activation of the Gαs-coupled D1/D5R selectively recruited Fyn kinase and enhanced GluN2B-mediated NMDAR currents. Biochemical experiments confirmed that D1/D5R stimulation activates Fyn kinase and enhances the tyrosine phosphorylation of GluN2B subunits. In contrast, activation of the Gαq-coupled PAC1R selectively recruited Src kinase to enhance the function of GluN2A-containing NMDARs. Enhancing the functional ratio of GluN2A-to-GluN2B subunits by PAC1R activation lowered the threshold for LTP induction whereas enhancing the functional ratio of GluN2B-to-GluN2A subunits by D1/D5R activation increased the threshold for LTP induction. Unexpectedly, activation of the Gαi/o-coupled mGluR2/3 enhanced NMDAR-mediated function via a previously unidentified mechanism. Inhibition of the cAMP-PKA pathway via mGluR2/3 activation resulted in activation of Src via decreased phosphorylation of its C-terminal Tyr527 by Csk. Stimulation of mGluR2/3 selectively potentiated the function of GluN2A-containing NMDARs but whether it shifted the modification threshold θm to the left requires further investigation.
12

Modulation of N-methyl-D-aspartate receptors by Gαs- and Gαi/o-coupled receptors

Trepanier, Catherine Helene 07 January 2013 (has links)
The induction of synaptic plasticity at CA1 synapses requires NMDAR activation. Modulation of NMDAR function by various GPCRs can shift the thresholds for LTP and LTD induction and contribute to metaplasticity. Here we showed that the activity of GluN2A- and GluN2B-containing NMDARs is differentially regulated by Gαi/o-coupled, Gαq- and Gαs-coupled receptors. Furthermore, enhancing the relative function of GluN2A-to-GluNB NMDAR activity by GPCRs can alter the balance of LTP and LTD induction and contribute to metaplasticity. In CA1 neurons, activation of the Gαs-coupled D1/D5R selectively recruited Fyn kinase and enhanced GluN2B-mediated NMDAR currents. Biochemical experiments confirmed that D1/D5R stimulation activates Fyn kinase and enhances the tyrosine phosphorylation of GluN2B subunits. In contrast, activation of the Gαq-coupled PAC1R selectively recruited Src kinase to enhance the function of GluN2A-containing NMDARs. Enhancing the functional ratio of GluN2A-to-GluN2B subunits by PAC1R activation lowered the threshold for LTP induction whereas enhancing the functional ratio of GluN2B-to-GluN2A subunits by D1/D5R activation increased the threshold for LTP induction. Unexpectedly, activation of the Gαi/o-coupled mGluR2/3 enhanced NMDAR-mediated function via a previously unidentified mechanism. Inhibition of the cAMP-PKA pathway via mGluR2/3 activation resulted in activation of Src via decreased phosphorylation of its C-terminal Tyr527 by Csk. Stimulation of mGluR2/3 selectively potentiated the function of GluN2A-containing NMDARs but whether it shifted the modification threshold θm to the left requires further investigation.
13

Impact d’une sieste sur plasticité cérébrale induite par stimulation magnétique transcrânienne

Sekerovic, Zoran 09 1900 (has links)
Chez l’humain, différents protocoles de stimulation magnétique transcrânienne répétée (SMTr) peuvent être utilisés afin de manipuler expérimentalement la plasticité cérébrale au niveau du cortex moteur primaire (M1). Ces techniques ont permis de mieux comprendre le rôle du sommeil dans la régulation de la plasticité cérébrale. Récemment, une étude a montré que lorsqu’une première session de stimulation SMTr au niveau de M1 est suivie d’une nuit de sommeil, l’induction subséquente de la plasticité par une deuxième session SMTr est augmentée. La présente étude a investigué si ce type de métaplasticité pouvait également bénéficier d’une sieste diurne. Quatorze sujets en santé ont reçu deux sessions de intermittent theta burst stimulation (iTBS) connue pour son effet facilitateur sur l’excitabilité corticale. Les sessions de stimulation étaient séparées par une sieste de 90 minutes ou par une période équivalente d’éveil. L’excitabilité corticale était quantifiée en terme d’amplitude des potentiels évoqués moteurs (PEM) mesurés avant et après chaque session de iTBS. Les résultats montrent que la iTBS n’est pas parvenue à augmenter de manière robuste l’amplitude des PEMs lors de la première session de stimulation. Lors de la deuxième session de stimulation, la iTBS a produit des changements plastiques variables et ce peu importe si les sujets ont dormi ou pas. Les effets de la iTBS sur l’excitabilité corticale étaient marqués par une importante variabilité inter et intra-individuelle dont les possibles causes sont discutées. / In humans, various repetitive transcranial magnetic stimulation (rTMS) protocols can be used to modulate motor cortical plasticity. These techniques have shed light on the role of sleep in neural plasticity regulation. Recent work has demonstrated that when a night of sleep follows one session of rTMS over the hand motor cortex (M1), the capacity to induce subsequent plasticity by another rTMS session in M1 is enhanced. The present study investigated whether such metaplasticity could also benefit from a day nap. Fourteen healthy participants received two sessions of intermittent theta burst stimulation (iTBS) known for its excitatory effects on cortical excitability over M1 spaced by either a 90-minute nap or an equivalent amount of wake. Motor cortical excitability was measured in terms of amplitude of motor evoked potentials (MEP), which were assessed before iTBS and after the stimulation. Results show that the first iTBS session did not induce significant change in MEP amplitude. The second iTBS session induced variable plastic changes regardless of whether participants slept or stayed awake. The effects of iTBS on motor cortical excitability were highly variable within and between individuals. The possible causes of such variability are discussed.
14

Impact d’une sieste sur plasticité cérébrale induite par stimulation magnétique transcrânienne

Sekerovic, Zoran 09 1900 (has links)
Chez l’humain, différents protocoles de stimulation magnétique transcrânienne répétée (SMTr) peuvent être utilisés afin de manipuler expérimentalement la plasticité cérébrale au niveau du cortex moteur primaire (M1). Ces techniques ont permis de mieux comprendre le rôle du sommeil dans la régulation de la plasticité cérébrale. Récemment, une étude a montré que lorsqu’une première session de stimulation SMTr au niveau de M1 est suivie d’une nuit de sommeil, l’induction subséquente de la plasticité par une deuxième session SMTr est augmentée. La présente étude a investigué si ce type de métaplasticité pouvait également bénéficier d’une sieste diurne. Quatorze sujets en santé ont reçu deux sessions de intermittent theta burst stimulation (iTBS) connue pour son effet facilitateur sur l’excitabilité corticale. Les sessions de stimulation étaient séparées par une sieste de 90 minutes ou par une période équivalente d’éveil. L’excitabilité corticale était quantifiée en terme d’amplitude des potentiels évoqués moteurs (PEM) mesurés avant et après chaque session de iTBS. Les résultats montrent que la iTBS n’est pas parvenue à augmenter de manière robuste l’amplitude des PEMs lors de la première session de stimulation. Lors de la deuxième session de stimulation, la iTBS a produit des changements plastiques variables et ce peu importe si les sujets ont dormi ou pas. Les effets de la iTBS sur l’excitabilité corticale étaient marqués par une importante variabilité inter et intra-individuelle dont les possibles causes sont discutées. / In humans, various repetitive transcranial magnetic stimulation (rTMS) protocols can be used to modulate motor cortical plasticity. These techniques have shed light on the role of sleep in neural plasticity regulation. Recent work has demonstrated that when a night of sleep follows one session of rTMS over the hand motor cortex (M1), the capacity to induce subsequent plasticity by another rTMS session in M1 is enhanced. The present study investigated whether such metaplasticity could also benefit from a day nap. Fourteen healthy participants received two sessions of intermittent theta burst stimulation (iTBS) known for its excitatory effects on cortical excitability over M1 spaced by either a 90-minute nap or an equivalent amount of wake. Motor cortical excitability was measured in terms of amplitude of motor evoked potentials (MEP), which were assessed before iTBS and after the stimulation. Results show that the first iTBS session did not induce significant change in MEP amplitude. The second iTBS session induced variable plastic changes regardless of whether participants slept or stayed awake. The effects of iTBS on motor cortical excitability were highly variable within and between individuals. The possible causes of such variability are discussed.
15

The combined role of amyloid precursor protein intracellular domain and amyloid-beta on synaptic transmission

Prozorov, Arsenii 08 1900 (has links)
Ces dernières années, de nombreuses études ont prouvé que la protéine précurseur de l'amyloïde (APP) joue un rôle clé dans le processus de formation de la mémoire, le développement des connexions synaptiques et la régulation de la force synaptique. L’importance d’APP naît du fait que son clivage protéolytique produit le peptide bêta-amyloïde (Aβ), considéré comme l'un des facteurs cruciaux dans le développement de la maladie d'Alzheimer. Les recherches se sont donc concentrées sur Aβ plutôt que sur le domaine intracellulaire APP (APP-ICD). Récemment, il a été démontré qu’APP-ICD affecte l'induction de la plasticité synaptique, et Aβ à haute concentration est connu pour induire une dépression synaptique. Ici, nous montrons qu’APP-ICD et Aβ fonctionnent ensemble et induisent une dépression synaptique en modifiant la transmission synaptique par effet additif. L’activation de la caspase-3 clivant APP-ICD est nécessaire pour la dépression à long terme. Nous constatons que l’activation de la caspase-3 et son site de clivage d’APP-ICD, ainsi que le clivage d’APP par la gamma-sécrétase sont nécessaires à la dépression synaptique dépendante d’Aβ. La microglie assure la clairance d’Aβ et certains effets de plasticité. Nous démontrons qu’elle médie partiellement la dépression synaptique dépendante d’Aβ. Les mécanismes par lesquels APP-ICD et Aβ médient la dépression synaptique ne sont pas connus. Ici, nous discutons de pistes possibles pour la recherche future, notamment des changements dans l'homéostasie du calcium en tant que cible thérapeutique potentielle. Comprendre comment APP-ICD et Aβ travaillent ensemble pour induire une dépression synaptique aiderait à développer de meilleurs traitements pour la maladie d'Alzheimer. / In recent years, more and more evidence has proven that the amyloid precursor protein (APP) plays a key role in the process of memory formation, the development of synaptic connections, and the regulation of synaptic strength. APP rose to prominence since its proteolytic cleavage produces the amyloid-beta (Aβ) peptide, which is believed to be one of the crucial factors in the development of Alzheimer disease. Therefore, most of the research focused on Aβ, while APP intracellular domain (APP-ICD) received much less attention. In a recent study, APP-ICD was shown to affect the induction of synaptic plasticity, and Aβ at high concentration is known to induce synaptic depression. Here we show that APP-ICD works together with Aβ to induce synaptic depression, meaning they have an additive effect that changes synaptic transmission. Caspase-3 cleaves APP-ICD, and its activation is required for long-term depression. We found that the caspase-3 cleavage site of APP-ICD and caspase-3 activation are needed for Aβ-dependent synaptic depression. We also show that cleavage of APP by gamma-secretase is needed for the effect. Microglia mediate clearance of Aβ as well as some plasticity effects. We demonstrate that microglia partially mediate Aβ-dependent synaptic depression. The mechanisms of how APP-ICD and Aβ mediate synaptic depression are not known, here, we discuss possible avenues for future research, specifically changes in calcium homeostasis as a potential therapeutic target. Hence, understanding how APP-ICD and Aβ work together to induce synaptic depression would aid in developing better treatments for Alzheimer disease.

Page generated in 0.0492 seconds