• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Input-Specific Metaplasticity by a Local Switch in NMDA Receptors

Lee, Ming-Chia January 2009 (has links)
<p>At excitatory synapses, NMDAR-mediated synaptic plasticity occurs in response to activity inputs by modifying synaptic strength. While comprehensive studies have been focused on the induction and expression mechanisms underlying synaptic plasticity, it is less clear whether and how synaptic plasticity itself can be subjected to regulations. The presence of "plasticity of plasticity", or meta-plasticity, has been proposed as an essential mechanism to ensure a proper working range of plasticity, which may also offer an additional layer of information storage capacity. However, it remains elusive whether and how meta-plasticity occurs at single synapses and what molecular substrates are locally utilized. Here, I develop systems allowing for sustained alterations of individual synaptic inputs. By implementing a history of inactivity at single synapses, I demonstrate that individual synaptic inputs control synaptic molecular composition homosynaptically, while allowing heterosynaptic integration along dendrites. Furthermore, I report that subunit-specific regulation of NMDARs at single synapses mediates a novel form of input-specific metaplasticity. Prolonged suppression of synaptic releases at single synapses enhances synaptic NMDAR-mediated currents and increases the number of functional NMDARs containing NR2B. Interestingly, synaptic NMDAR composition is adjusted by spontaneous glutamate release rather than evoked activity. I also demonstrate that inactivated synapses with more NMDARs containing NR2B acquire a lower induction threshold for long-term synaptic potentiation. Together, these results suggest that at single synapses, spontaneous release primes the synapse by modifying its synaptic state with specific molecular compositions, which in turn determine the synaptic gain in an input-specific manner.</p> / Dissertation
2

G-Protein Coupled Receptor Mediated Metaplasticity at the Hippocampal CA1 Synapse

Sidhu, Bikrampal Singh 23 February 2010 (has links)
Activity of the NMDA receptor is crucial for CA1 plasticity. Functional modification of the receptor is one way to modulate synaptic plasticity and affect hippocampus dependent behaviours. Two GPCRs, the dopamine receptor D1 and the PACAP38 receptor PAC1, have been shown to enhance NMDA activity via Gq and Gs signaling pathways respectively. Enhancement of NMDAR activity by the D1/Gs pathway depends on phosphorylation of the NR2B subunit by Fyn kinase. Conversely, enhancement by the PAC1/Gq pathway depends on phosphorylation of the NR2A subunit by Src kinase. SKF81297, a D1 agonist, was shown to enhance LTD whereas PACAP38, through the PAC1 pathway, was shown to lower the threshold for LTP. Both effects were blocked by specific antagonists and shown to be dependent on NR2 subunit phosphorylation. Ultimately, physiological metaplasticity at the CA1 synapse may be mediated by the relative activation of many GPCR signaling pathways via modification of the NR2 subunit.
3

G-Protein Coupled Receptor Mediated Metaplasticity at the Hippocampal CA1 Synapse

Sidhu, Bikrampal Singh 23 February 2010 (has links)
Activity of the NMDA receptor is crucial for CA1 plasticity. Functional modification of the receptor is one way to modulate synaptic plasticity and affect hippocampus dependent behaviours. Two GPCRs, the dopamine receptor D1 and the PACAP38 receptor PAC1, have been shown to enhance NMDA activity via Gq and Gs signaling pathways respectively. Enhancement of NMDAR activity by the D1/Gs pathway depends on phosphorylation of the NR2B subunit by Fyn kinase. Conversely, enhancement by the PAC1/Gq pathway depends on phosphorylation of the NR2A subunit by Src kinase. SKF81297, a D1 agonist, was shown to enhance LTD whereas PACAP38, through the PAC1 pathway, was shown to lower the threshold for LTP. Both effects were blocked by specific antagonists and shown to be dependent on NR2 subunit phosphorylation. Ultimately, physiological metaplasticity at the CA1 synapse may be mediated by the relative activation of many GPCR signaling pathways via modification of the NR2 subunit.
4

A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

Bell, Iris, Koithan, Mary January 2012 (has links)
BACKGROUND:This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution / (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects / (d) improve systemic resilience.DISCUSSION:The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease.SUMMARY:Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.
5

Implication du domaine intracellulaire du précurseur de la protéine amyloïde dans la modulation de la plasticité synaptique

Trillaud-Doppia, Émilie 04 1900 (has links)
Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease. / La maladie d’Alzheimer est la forme la plus commune de démence liée au vieillissement ; elle est caractérisée par des déficits précoces d’apprentissage et de mémorisation et entraîne à terme une perte généralisée des fonctions cognitives supérieures. Alors que l’amyloïde-bêta (Aβ) et la protéine tau sont traditionnellement associées au développement de la maladie d’Alzheimer, des études récentes suggèrent que d’autres facteurs, tels que le domaine intracellulaire (APP-ICD) du précurseur de la protéine amyloïde (APP), pourraient jouer un rôle. Dans notre étude, nous avons testé si l’APP-ICD pourrait affecter les mécanismes de transmission ou de plasticité synaptique dans l’hippocampe, qui sous-tendent les processus d’apprentissage et de mémorisation. Nos résultats ont indiqué que la surexpression de l’APP-ICD dans des neurones du CA1 de l’hippocampe entraînait une diminution de la transmission synaptique dépendante des récepteurs AMPA et NMDA. Notre étude a montré que cet effet était spécifique de l’APP-ICD puisque son plus proche homologue l’APLP2-ICD n’a pas eu cet effet. De plus, l’APP-ICD entraînait un blocage de la potentialisation à long terme (LTP), une augmentation de l’expression et une facilitation de l’induction de la dépression à long terme (LTD), mais l’APLP2-ICD n’a eu aucun de ces effets. Notre étude a montré que cette différence observée en transmission et en plasticité synaptique entre les deux peptides réside dans le changement d’une seule alanine dans l’APP-ICD pour une proline dans l’APLP2-ICD, et que l’APP(PAV)-ICD n’avait pas d’effet sur la plasticité synaptique. Nous avons aussi démontré que l’APLP2(AAV)-ICD mimait l’effet de l’APP-ICD pour la facilitation de la LTD. Ensuite nous avons montré que la longue forme APP-APLP2-APP (APP avec un changement de la séquence de l’Aβ pour celle homologue de l’APLP2) ne montrait pas d’effet en comparaison avec l’APP-ICD, ni sur la transmission synaptique ni sur la plasticité synaptique. Cependant, en activant le clivage par les caspases préalablement à l’induction de la LTD ou la LTP, nous avons observé une facilitation de la LTD et un iii blocage de la LTP avec l’APP-APLP2-APP, des effets que nous n’avons pas reproduit avec la longue forme APLP2. La thréonine 668 phosphorylable se trouve immédiatement après l’alanine et le site de clivage par les caspases dans l’APP-APLP2-APP. La mutation de la Thr668 pour une alanine a aboli son effet sur la LTD et restauré la LTP. Finalement, nous avons montré que la facilitation de la LTD par l’APP-APLP2-APP dépendait de la libération de calcium intracellulaire par les récepteurs ryanodines. En conséquence, nous proposons l’émergence d’un nouveau domaine de l’APP jouant un rôle critique, en plus de l’Aβ, dans les processus à la base de l’apprentissage et qui en conséquence pourrait jouer un rôle dans le développement de la maladie d’Alzheimer.
6

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
7

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
8

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
9

PLASTICITY MECHANISMS IN VISUAL CORTEX: ANIMAL MODELS AND HUMAN CORTEX / MECHANISMS OF REINSTATED PLASTICITY

Beshara, Simon P January 2016 (has links)
A holy grail in neuroscience is being able to control plasticity to facilitate recovery from insult in the adult brain. Despite success in animal models, few therapies have translated from bench to bedside. This thesis is aimed at addressing 2 major stumbling blocks in translation. The first gap is in our understanding of the mechanisms of plasticity-enhancing therapies, and the second is in our understanding the relevance of those mechanisms for human development. In chapters 2 and 3, I address the first gap by asking whether fluoxetine, a selective serotonin reuptake inhibitor, which reinstates juvenile-like plasticity in adult animals, reinstates a juvenile-like synaptic environment. We found evidence to suggest that fluoxetine is neuroprotective, as it rescued all of the MD-driven changes, but surprisingly we found no evidence that fluoxetine recreated a juvenile-like synaptic environment, with the exception of Ube3A. Ube3A is necessary for critical period plasticity, indicating that Ube3A may play a crucial in enhancing plasticity in the adult cortex. In chapter 4, I address whether D-serine, an amino acid that has similar effects to fluoxetine in terms of both plasticity and anti-depression, shares a common neurobiological signature with fluoxetine. I found that D-serine’s effects were strikingly similar to fluoxetine, with respect to markers of the E/I balance, indicating that it may be an effective alternative to fluoxetine. In chapter 5, I address the second gap by studying the development of 5 glutamatergic proteins in human V1. Some changes occurred early, as would be predicted from animals studies, while other changes were protracted, lasting into the 4th decade. These results will help guide the use of treatments, like fluoxetine, which effect glutamatergic proteins. iv Together the findings in this thesis significantly advances our understanding of the mechanisms involved in restating plasticity in the adult cortex, and their relevance to humans. / Dissertation / Doctor of Philosophy (PhD) / Neurons change to rewire, adapt, and recover. This plasticity is greatest early in development, so much research has focused on bringing it back in adults. There has been amazing progress in animal models, but this has not translated to humans. Two reasons for this are that we do not fully understand the mechanisms of these treatments in animals or whether those mechanisms are relevant for humans. My thesis addresses this by studying how 2 treatments, fluoxetine and D-serine, affect proteins that are important for plasticity, and how those proteins develop in the humans. I found that these treatments are neuroprotective, but do not recreate a younger state. One interesting standout is an increase in Ube3A, which is essential for juvenile plasticity. I also found that much of human development is similar to animals, but the time course for some proteins is uniquely prolonged in humans. These findings have implications for the use of plasticity-enhancing treatments at different ages.
10

Régulation du réseau hippocampique par la plasticité synaptique mTORC1-dépendante des interneurones somatostatinergiques

Jordan, Alexander 12 1900 (has links)
No description available.

Page generated in 0.0584 seconds