• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 55
  • 12
  • 11
  • 9
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 240
  • 112
  • 80
  • 53
  • 46
  • 35
  • 35
  • 27
  • 27
  • 27
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Investigation and characterization of polythiol (meth)acrylate based resins for UV-curing applications / Investigation et caractérisation de matériaux polymères photo-réticulés à base de résines polythiol (meth)acrylate pour des applications de photopolymérisation industrielle

Belbakra, Zakaria 19 December 2013 (has links)
L’objectif de cette thèse est de développer des matériaux polymérisés par rayonnement ultra-violet possédant une bonne balance des propriétés thermomécaniques entre résistance à la température, rigidité (strength) et résistance à l’impact. Une direction vers cet objectif est l’utilisation de résines (meth)acrylate modifiées avec des thiols polyfonctionnels. Cependant, les thiol-ene en général sont sujets à un problème de polymérisation prématurée incontrôlée même à l’abri de la lumière. Ce problème doit être traité puisque celui-ci conditionne le succès des thiol-ene dans le domaine des photopolymères. La première partie de cette thèse concerne l’élaboration de résine (meth)acrylate modifiée par l’incorporation d’un polythiol, le pentaerythritol tetrakismercaptopropionate (PETMP), à différents ratio. Les propriétés thermomécaniques et photochimiques de ces résines sont à l’étude. La seconde partie traite du problème de polymérisation prématurée incontrôlée des thiol-ene. Une étude de stabilité thermique aboutissant à des résultats très encourageant est proposée. Finalement, la dernière partie porte sur la caractérisation des réseaux photo-réticulés par pyrolyse-GC/MS. La compréhension de la constitution des réseaux tridimensionnels devraient apportés des avancées dans l’élaboration de nouveaux matériaux. Une nouvelle méthode de caractérisation utilisant la pyrolyse-GC/MS directe à multi-étapes est développée. Enfin, des résultats sur l’application de la méthode sur des matériaux à base de (meth)acrylate difonctionnel photopolymérisés ainsi qu’une tentative de caractérisation de matériaux à base de polythiol/(meth)acrylates photopolymérisés sont reportés puis discutés. / This thesis fall within an approach aiming to develop UV-processed materials having a good thermo-mechanical properties balance between strength, temperature resistance and impact resistance. A direction toward this objective is the use of photocurable (meth)acrylate resins modified with polyfunctional thiols. Indeed, thiol-ene chemistry is known to have poor sensitivity toward oxygen inhibition, to improve the dimensional stability and toughness properties of photocured materials. However, thiol-ene resins are subjected to premature uncontrolled dark polymerization, an issue that has to be solved for their success in the photopolymers area. The first part of this work is focused on the thermo-mechanical and the photopolymerization properties investigation of a pentaerythritol tetrakismercaptopropionate (PETMP) modified (meth)acrylate based resin by looking at different ratio of polythiol/(meth)acrylate. The second part is dedicated to the understanding of the thermal instability of such systems and to the solving of this issue. Finally, a special interest is brought to the characterization of photopolymeric networks by pyrolysis-GC/MS. The lake of deep understanding and view about how the cured networks are really constituted due to the difficulty to analyze insoluble cured polymers, prevents improvements in the formulation of high performance materials. Further information on cured networks constitution could bring useful information for the elaboration of new materials. A new characterization method based on direct multi-step pyrolysis-GC/MS is developed and an attempt on the characterization of polythiol (meth)acrylate material by Py-GC/MS is reported and discussed.
52

Design, Synthesis, Processing, and Thermal Analysis of Nanocomposites with Tunable Properties

Kim, Mu Seong 01 January 2012 (has links)
Polymer composites containing nanosized fillers have generated explosive interest since the early 1980's. Many recent studies have been conducted incorporating nano-fillers into polymer matrices to design and synthesize materials with tunable mechanical, thermal, and optical properties. Conventional filled polymers, where the reinforcement is on the order of microns, have been replaced by composites with discrete nanosized fillers. Gradually, theories that predicted that composite properties are independent of particle size in the micron range were challenged by nanocomposites. Rather, nanocomposite properties are greatly influenced by the surface area of the. All of this is complicated by the fact that nanoparticles are inclined to aggregate or migrate to interfaces. Much effort has been devoted to optimize dispersion of nanofillers in the polymer matrices, as polymer-nanoparticle interactions and adhesion greatly influence performance of the material. A well- dispersed composite system with various noncovalent interactions such as those that arise from hydrogen bonding, electrostatic attractions and π-π interactions between the filler and the matrix, can transfer stress and the interface will stop the development of cracks and impede stress concentrations. Overall, large reinforcement increases are noted at low nanoparticle loadings. Additionally, functional properties such as thermal, electrical conductivity and porosity can be tailored for specific applications. The design of high performance composites requires optimizing dispersion, nanoparticle-polymer noncovalent interactions and the chemistry of the materials. Therefore polymer composites with different types of nanofillers were investigated to prove various noncovalent interaction and to improve the mechanical, thermal and electrical properties in this study. Poly (methyl methacrylate) (PMMA) with BaTiO3 and Bi2O3 composites were fabricated by two different methods; sonication of fillers in PMMA and in situ polymerization. Samples were irradiated in air via a JL Shepherd Mark I cesium-137 source. The dose rate was 985 rads/min and the total dose was 2.0 Mrad. The polymer sonication (PSON) method has a greater effect than in situ polymerization on sample uniformity. With the PSON method there was a slight improvement in rad hardness in the barium titanate composites. This is the case with and without MWNTs and coupling agents. The storage modulus and loss modulus were measured via Dynamic Mechanical Analyzer (DMA) under the tension film mode using a heating rate of 5 °C min-1 from -150 °C to 200 °C and a scanning frequency range of 1-100 Hz. Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites. An aliphatic isocyanate, polyether, polyol thermoplastic polyurethane, Tecoflex® SG-85A, was solution processed with the varying amounts of silica nanowire. A new grade polyurethane, Tecoflex®, was synthesized from the aliphatic 4,4-methylene dicyclohexyl diisocyanate (H12MDI) with polytetramethylene ether glycol. Despite Tecoflex®'s longevity and wide use, this polymer's dielectric behavior has not been widely studied. Therefore, the dielectric response of neat PU, Tecoflex®, and PU composites with silica nanowire from -150 to 150 °C is presented. The mechanism of nanowire growing with diameters ranging from 50 to 500 nm has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Our previous thermal stability study of PU nanowire composites have yielded increased heat stability to 330 °C. In comparison, neat PU only maintains thermal stability in temperatures that range to 250 °C. The onset of decomposition temperature was measured by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites. A series of PMMA-dodecyloxy NB and PHEMA-dodecyloxy NB composites were synthesized in situ and characterized. The dodecyl groups significantly alter the solubility of the nanoballs, imparting hydrophobicity to the surface of the nanoball. A comparison study was made between the PMMA-NB and PHEMA-NB nanocomposites. Structure property relations are discussed in terms of interactions between the polymer matrices and nanoball surfaces and interiors. These OC12 NB and the hydroxyl NB polymer composites are the first studies to date that probe relaxations and conductivity in discrete polyhedral metal-organic polymer composites. A novel ultra-flexible polycarbonate-polyurethane (PCPU) was synthesized with methylene bis(4-cyclohexylisocyanate), 1,4 butanediol as a chain extender and a polycarbonate polyol containing 1,6-hexanediol and 3-methyl-1,5-pentanediol. Through the techniques of water coagulation, the synthesis of self-healing PCPU with various concentrations of SWNT (Single-Walled Nanotubes) is possible. The resulting features of this synthesized rubber-like substance are to be evaluated to determine glass transition temperature. This novel type of polyurethane material targets growing markets for biocompatible polymers. Also, a secondary goal of this project is to obtain information useful to determining whether PCPU-carbon nanotube composites would be good candidates for use as a gel electrolyte in polymer batteries. All nanocomposites were characterized by differential scanning calorimetry (DSC) to determine glass transition temperatures. The dielectric permittivity (ε’) and loss factor (ε”) were also measured via Dielectric Analysis (DEA) in the frequency range 1Hz to 100 kHz and between the proper temperatures in all polymer composite. The electric modulus formalism was used to reveal structural relaxations including conductivity relaxation. The activation energies for the relaxations are presented.
53

Multifunktionale (Meth)acrylat-Copolymere mit Phosphonsäurederivaten

Starke, Sandra 07 December 2015 (has links) (PDF)
Ziel der Doktorarbeit war es, Copolymere mit phosphonsäurehaltigen Seitenketten zu entwickeln, die nachfolgend über polymeranaloge Umsetzungen in Terpolymere mit polymerisationsfähgen Gruppen umgewandelt werden sollten. Die Terpolymere können dann somit im Bereich der Schicht,- Lackindustrie eingesetzt werden.
54

Kinetics Of Photo Initiated Organic And Polymer Reactions

Vinu, R 04 1900 (has links) (PDF)
Photo-initiated reactions involve the use of ultraviolet (UV) or visible light radiation to effect chemical transformations. Some of the advantages of photo-initiated reactions over thermal or high pressure reactions include mild reaction conditions like ambient temperature and pressure, good control over the reaction by the simple switching on/off the light source, and faster reaction kinetics. Usually, semiconductor photocatalysts or oxidizing agents are used to enhance the rate of photo reactions. “Photocatalysis” involves the generation of valence band holes and conduction band electrons by the band gap excitation of a semiconductor photocatalyst. These charge carriers produce reactive hydroxyl and superoxide radicals, which mediate oxidation and reduction reactions. However, the oxidizing agents are decomposed by the incident radiation to generate reactive radicals, which accelerate the photo reaction. Today, photocatalysis and photo-oxidative reactions are widely being practiced for environmental pollution abatement, synthesis of fine chemicals, synthesis of polymers, generation of hydrogen as a clean energy carrier, and in anti-fogging and self-cleaning surface treatments. The present investigation focuses on elucidating the mechanism and kinetics of environmentally and synthetically relevant photo-initiated reactions for a better understanding of the fundamental aspects of the photo processes. The different photo-initiated reactions studied in this dissertation can be grouped under the broad categories of (i) photocatalytic degradation of organic compounds like dyes and phenols, and reduction of metal ions, (ii) photocatalytic degradation of polymers, (iii) selective photocatalytic oxidation of cyclohexane, (iv) sonophotocatalytic degradation of dyes, (v) photopolymerization, and (vi) sonophotooxidative degradation of polymers. Nano-sized TiO2, synthesized by solution combustion technique (henceforth denoted as CS TiO2), was used as the photocatalyst for most of the above reactions, except for the last two polymer reactions, where organic initiators were used. Invariably, the photocatalytic activity of CS TiO2 was compared with the commercially available Degussa P-25 TiO2 (DP25). Based on the experimental results, detailed mechanisms were proposed for the different reactions, kinetic models were derived, and the rate coefficients signifying the importance of the underlying reaction steps were evaluated. Pd2+ substituted and Pd0 impregnated TiO2 were synthesized by solution combustion and reduction techniques, respectively, and characterized by powder XRD, XPS, TEM, BET surface area, UV/visible, TGA, FT-IR and photoluminescence measurements. While the above catalysts are known to be more active compared to CS TiO2 for the gas phase NO reduction and NO decomposition reactions, it was found in this study, that these catalysts exhibit lower activity for the degradation of organic compounds like dyes, phenol and 4-chlorophenol, in the aqueous phase. The decrease in activity was correlated with a reduction in surface area and photoluminescence intensity of these catalysts, compared to CS TiO2. Ag+ substituted (Ag sub) and Ag0 impregnated (Ag imp) nano-TiO2 were synthesized by solution combustion and reduction techniques, respectively, and characterized by the above standard measurements. These catalysts were used for the photodegradation of dyes, and the selective photooxidation of cyclohexane to cyclohexanone. For the photocatalytic degradation of dyes, unsubstituted CS TiO2 exhibited the highest activity, followed by 1% Ag imp and 1% Ag sub. However, for the photooxidation of cyclohexane, the total conversion of cyclohexane and the selectivity of cyclohexanone followed the order: 1% Ag sub > DP-25 > CS TiO2 > 1% Ag imp. The kinetics of photodegradation of the dyes and the photooxidation of cyclohexane was modeled using Langmuir-Hinshelwood rate equation, and a free radical mechanism, respectively. This study proves that the photoactivity of a catalyst is not solely determined by a single physical property, but rather by a number of variables including the surface area, band gap, surface hydroxyl content, oxide ion vacancy and surface charge of the catalyst. The photocatalytic degradation of five anionic, eight cationic and three solvent dyes, containing different functional groups, was evaluated. The degradation of the dyes was quantified using the initial rate of decolorization and overall percent mineralization. The decolorization of the anionic dyes with CS TiO2 followed the order: Indigo Carmine > Eosin Y > Amido Black 10B > Alizarin Cyanine Green > Orange G. The decolorization of the cationic dyes with DP-25 followed the order: Malachite Green > Pyronin Y > Rhodamine 6G > Azure B > Nile Blue Sulfate > Auramine O ≈ Acriflavine ≈ Safranin O. CS TiO2 exhibited higher rates of decolorization and mineralization for all the anionic dyes, while DP-25 was better in terms of decolorization for most of the cationic dyes. The solvent dyes exhibited adsorption dependent decolorization. The observed results were rationalized based on the molecular structure and degradation pathway of the dyes. The simultaneous photocatalytic degradation of phenolic compounds like phenol and 4-nitrophenol, and the reduction of metal ions like copper (Cu2+) and chromium (Cr6+) were studied. It was found that the presence of phenol accelerated the reduction of Cu2+ to Cu+, and the presence of phenol and 4-nitrophenol accelerated the adsorption of Cr6+ onto CS TiO2. A detailed dual-cycle, multi-step reaction mechanism was proposed for the simultaneous degradation and reduction, and a model was developed using the network reduction technique. The kinetic rate constants in the model were evaluated for the systems studied. The simultaneous UV and ultrasound (US) degradation of anionic dyes was carried out in presence of CS TiO2. The rates of degradation and mineralization of the dyes were higher for the sonophotocatalytic process compared to the individual photo-and sonocatalytic processes. The effect of dissolved gases and US intensity on the sonophotocatalytic degradation of the dyes was evaluated. A dual-pathway network mechanism of sonophotocatalytic degradation was proposed for the first time, and the rate equations were modeled using the network reduction technique. The kinetic rate coefficients of the individual steps were evaluated for all the systems by fitting the model with the experimental data. Eosin Y and Fluorescein dye sensitized visible light degradation of phenol, 4chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol was studied. A detailed mechanism of sensitized degradation was proposed, and a mechanistic model for the rate of degradation of the phenolic compound was derived by using the pyramidal network reduction technique to evaluate the rate coefficients. An important conclusion of this study indicates that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The different phenolic and dye intermediates that were formed during degradation were identified by mass spectrometry, and a most probable pathway of degradation was proposed. The solution photopolymerization of methyl-, ethyl-, butyl-and hexylmethacrylates in presence of benzoyl peroxide as the initiator was studied. The effect of initiator and monomer concentrations on the time evolution of polymer concentration, number average molecular weight (Mn) and polydispersity (PDI) was examined. The reversible chain addition and β-scission, and primary radical termination steps were included in the mechanism along with the classical initiation, propagation and termination steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The model predicted the instantaneous increase of Mn and PDI of the polymers to steady state values. The rate coefficients exhibited a linear increase with the size of the alkyl chain of the alkyl methacrylates. Poly(acrylamide-co-acrylic acid) copolymers of different compositions were synthesized and characterized. The copolymers were statistical with a relatively high percentage of acrylamide units, as determined by 13C-NMR. The aqueous phase photolytic and photocatalytic degradation of the copolymers and the homopolymers was conducted. The degradation was modeled using continuous distribution kinetics. The degradation followed a two step mechanism, wherein the rapid first step comprised of the scission of weak acrylic acid units along the chain, which was followed by the breakage of the relatively strong acrylamide units. The rate constants for the weak and strong links followed a linear trend with the percentage of acrylic acid and acrylamide in the copolymer, respectively. The photocatalytic degradation of the copolymers of methyl methacrylate with butyl methacrylate (MMA-BMA), ethyl acrylate (MMA-EA) and methacrylic acid (MMA-MAA) was carried out in toluene. The copolymers and the corresponding homopolymers degraded randomly along the chain. The degradation rate coefficient was determined using continuous distribution kinetics. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the FT-IR spectra of the copolymers indicated that the degradation rate follows the order: MMA-MAA > MMA-EA > MMA-BMA. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. The observed contrast in the order of thermal stability compared to the photostability of these copolymers was attributed to the two different mechanisms governing the scission of the polymers and the evolution of the products. The mechano-chemical degradation of poly(methyl methacrylate), poly(ethyl methacrylate) and poly(n-butyl methacrylate) using US and UV radiation, in presence of benzoin as the photoinitiator, was carried out. A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by hydrogen abstraction of the initiator radicals, and reversible chain transfer between the stable polymer and the polymer radicals, was proposed. The mechanism assumed mid-point chain scission due to US and random chain scission due to UV radiation. The steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV radiation exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively.
55

Multifunktionale (Meth)acrylat-Copolymere mit Phosphonsäurederivaten

Starke, Sandra 17 November 2015 (has links)
Ziel der Doktorarbeit war es, Copolymere mit phosphonsäurehaltigen Seitenketten zu entwickeln, die nachfolgend über polymeranaloge Umsetzungen in Terpolymere mit polymerisationsfähgen Gruppen umgewandelt werden sollten. Die Terpolymere können dann somit im Bereich der Schicht,- Lackindustrie eingesetzt werden.
56

A Mixed Biosensing Film Composed of Oligonucleotides and Poly (2-hydroxyethyl methacrylate) Brushes to Enhance Selectivity for Detection of Single Nucleotide Polymorphisms

Wong, April Ka Yee 02 September 2010 (has links)
This work has explored the capability of a mixed film composed of oligonucleotides and oligomers to improve the selectivity for the detection of fully complementary oligonucleotide targets in comparison to partially complementary targets which have one and three base-pair mismatched sites. The intention was to introduce a “matrix isolation” effect on oligonucleotide probe molecules by surrounding the probes with oligomers, thereby reducing oligonucleotide-to-oligonucleotide and/or oligonucleotide-to-surface interactions. This resulted in a more homogeneous environment for probes, thereby minimizing the dispersity of energetics associated with formation of double-stranded hybrids. The mixed film was constructed by immobilizing pre-synthesized oligonucleotides onto a mixed aminosilane layer and then growing the oligomer portion by surface-initiated atom transfer radical polymerization (ATRP) of 2-hydroxy methacrylate (PHEMA). The performance of the mixed film was compared to films composed of only oligonucleotides in a series of hybridization and melt curve experiments. Surface characterization techniques were used to confirm the growth of the oligomer portion as well as the presence of both oligonucleotides and oligomer components. Polyatomic bismuth cluster ions as sources for time-of-flight secondary ion mass spectrometry experiments could detect both components of the mixed film at a high sensitivity even though the oligomer portion was at least 200-fold in excess. At the various ionic strengths investigated, the mixed films were found to increase the selectivity for fully complementary targets over mismatched targets by increasing the sharpness of melt curves and melting temperature differences (delta Tm) by 2- to 3-fold, and by reducing non-specific adsorption. This resulted in improved resolution between the melt curves of fully and partially complementary targets. A fluorescence lifetime investigation of the Cy3 emission demonstrated that Cy3-labeled oligonucleotide probes experienced a more rigid microenvironment in the mixed films. These experiments demonstrated that a mixed film composed of oligonucleotides and PHEMA can be prepared on silica-based substrates, and that they can improve the selectivity for SNP discrimination compared to conventional oligonucleotide films.
57

Resina acrílica implementada na tecnologia CAD-CAM: análise longitudinal e comparativa da rugosidade superficial e microdureza após sucessivos ciclos de termociclagem / The superiority of the CAD-CAM acrylic resins: myth or a reality?

Costa, Rodrigo Moreira Bringel da 16 October 2018 (has links)
As propriedades de rugosidade superficial e microdureza são reconhecidas como propriedades muito relevantes no que concerne ao tratamento com prótese total removível, estando associadas ao desgaste da prótese e à sua predisposição à colonização por microrganismos. A proposição deste estudo foi realizar uma análise longitudinal e comparativa, destas duas propriedades, entre uma nova resina acrílica (Vipi Block Gum) para bases de próteses totais removíveis, implementada na tecnologia CAD-CAM, e duas resinas acrílicas termopolimerizáveis, sendo uma convencional (Vipi Cril Plus) e outra polimerizada por ação de micro-ondas (Vipi Wave), antes e após a aplicação de sucessivos ciclos de envelhecimento térmico por temociclagem, de modo a investigar a existência de uma correlação entre o processo de polimerização e o desempenho do material. Para isto, foram confeccionados um total de 60 corpos de prova com formato quadrangular com dimensões de 12x12x3mm, sendo destinados 20 corpos de prova para cada material. Para cada resina, 10 corpos de prova foram destinados ao teste de microdureza Knoop (KHN) e os outros 10 corpos de prova foram submetidos ao teste de rugosidade superficial (Ra-m). As análises dos corpos de prova, para ambos os experimentos, foram realizadas em quatro estágios distintos. As primeiras leituras foram realizadas após imersão dos materiais em água deionizada a 37ºC durante 24 horas (T1), com subsequentes análises após a aplicação de 500 ciclos (T2), 1000 ciclos (T3) e 3000 ciclos (T4) de termociclagem, com temperaturas de 5ºC a 55ºC com duração de 60 segundos para cada banho. Na avaliação estatística, a comparação das médias entre os grupos de resinas foi realizada com o teste de análise de variância (ANOVA) de um critério sendo, seguido do teste de Tukey. Para a comparação interna de cada grupo, em relação ao estágio de termociclagem, foi utilizado um ANOVA de medidas repetidas. O nível de significância adotado foi de 5%. Não houve diferença estatisticamente significante, na comparação intragrupos e intergrupos, em relação à rugosidade superficial (p>0.05). Na análise comparativa da microdureza entre os grupos, foi observada diferença estatisticamente significante nas análises em T1 e T2, com a resina Vipi Block obtendo valores superiores às outras resinas (p=0.00). Em T3, observou-se uma redução significativa da microdureza de todas as resinas, sendo mais pronunciada na resina Vipi Block Gum, tendo esta sido estatisticamente superior apenas em relação à Vipi Wave (p=0.01). Em T4 foi observado um aumento significativo na resina Vipi Cril Plus, com diferença estatisticamente significante (p>0.05) em relação às outras resinas. Na análise interna de cada grupo, foram observadas interações estatisticamente significantes em todas as resinas (p<0.05). A resina Vipi Block Gum teve sua microdureza drasticamente reduzida em T3, mantendo-se similar em T4, sendo significativamente inferiores (p<0.05) aos valores obtidos em T1 e T2. A resina Vipi Cril Plus sofreu uma acentuada redução na comparação em T1 em relação a T3 (p=0.021). Em T4, tornou-se estatisticamente superior a todos os outros períodos (p<0.05). A resina Vipi Wave sofreu redução significativa de T2 para T3 (p=0.01). Semelhantemente, obteve um aumento em T4, tornando-se estatisticamente superior a T3 (p=0.01). / Superficial roughness and microhardness are considered as extremely relevant properties which directly affects treatments with complete removable dentures, being them related to wear, and to the vulnerability of these prostheses to be colonized by microorganisms. The objective of this study was to perform a longitudinal analysis of these properties, making a comparison between a new CAD-CAM denture base acrylic resin (Vipi Block Gum), a conventional heat-polymerized and a microwave-polymerized resins, before and after the application of successive thermocycling cicles, in order to investigate a possible higher performance presented by the Vipi Block Gum resin. Sixty quadrangular shaped specimens with dimensions of 12x12x3mm were made and were equally divided between the three resins. For each material, 10 specimens were destined to the surface roughness analysis (Ra-m) and the other 10, for the Knoop microhardness (KHN) evaluation. The firsts analyses were performed after a 24-hour period of immersion in distilled water at 37ºC (T1), with subsequent analyses after 500 cicles (T2), 1000 cicles (T3) and 3000 cicles (T4) of thermocycling, with temperatures ranging from 5ºC to 55ºC and with 60 seconds of immersion, for each temperature. The statistical analysis, for the intergroup comparison, was done by applying a one-way analysis of variance (ANOVA) test, seconded by Tukeys posthoc test. For the intragroup analysis, a repeated measures ANOVA was applied. A significance level of 5% was adopted for both analyses. There were no significant differences for both intragroup and intergroup comparisons concerning the superficial roughness (p>0.05). The intergroup microhardness analyses showed significant differences at T1 and T2 (p=0.00), with higher values presented by the Vipi Block Gum resin when compared to the other groups. At T3, it was noticed a significant reduction for all materials, although it was more pronounced in the Vipi Block Gum resin, with this group having higher values than the Vipi Wave group (p=0.01). The comparison at T4 showed significant higher values presented by the Vipi Cril Plus in relation to the other groups (p<0.05). The intragroup analyses exhibited statistical significant differences for all materials (p<0.05). Vipi Block Gum resin suffered a significant decrease on its microhardness at T3, which remained similar at T4. However, these values were significant below (p<0.05) the ones obtained at T1 and T2. Vipi Cril Plus group showed a significant decrease at T3 in comparison with T1 (p=0.021). However, it increased significantly at T4 having statistical higher values than all other periods (p<0.05). Vipi Wave group suffered an expressive decrease at T3 in comparison with T2 (p=0.01). It also had an increase on its microhardness at T4, with statistical higher values than the ones observed at T3 (p=0.01).
58

Polimerização fotoiniciada e degradação foto-oxidativa de nanocompósitos de poli(metacrilato de metila)/argilas organofílicas / Photoinitiated polymerization and photo-oxidative degradation of poly(methyl methacrylate)/organo clays nanocomposites

Silvano Rodrigo Valandro 20 February 2013 (has links)
Nanocompósitos de PMMA/ argila montmorilonita foram obtidos por fotopolimerização in situ. O metacrilato de metila foi polimerizado na presença de argilas modificadas usando Tioxantona (TX) e etil 4-(dimetilamino) benzoato (EDB) como sistema fotoiniciador. As argilas montmorilonitas SWy-1 modificadas, SWy-1-C8 e SWy-1-C16, foram preparadas pela troca de íons com brometo de octiltrimetilamônio (C8) e brometo de hexiltrimetilamônio (C16), respectivamente. A difração de raios-X indicou que os compósitos de PMMA/argila podem ter estruturas intercaladas ou esfoliadas, ou mesmo uma mistura de estruturas em camadas esfoliada e parcialmente intercalada. A estrutura de cada nanocompósito depende da concentração de argila e do solvente utilizado na preparação. A influência da concentração de argila organofílica, natureza do solvente e tipo de argila nas propriedades térmicas e mecânicas foi estudada por análise termogravimétrica e análise dinâmico-mecânica. Todos os nanocompósitos preparados em acetonitrila exibiram melhora da sua estabilidade térmica, principalmente devido à interação entre a argila e o polímero que é maximizada através da estrutura da argila esfoliada. No caso do PMMA e nanocompósitos sintetizados em etanol, a estabilidade térmica do polímero e nanocompósitos foi praticamente a mesma, uma vez que a estrutura da argila é predominantemente do tipo intercalada. Na velocidade de polimerização observou-se que os fatores que mais influenciaram foram a concentração de argila e o tipo de solvente. A argila proporciona a formação de microambientes que estabilizam o estado excitado do iniciador formando mais radicais livres e consequentemente aumentando a velocidade polimerização. A utilização da acetonitrila, a qual é um melhor solvente para o PMMA proporcionou massas molares menores. A degradação foto-oxidativa dos nanocompósitos de PMMA/ argila foi investigada utilizando cromatografia de exclusão de tamanho (SEC). Foram encontradas evidências de que o PMMA e nanocompósitos degradam por cisões aleatórias de cadeias. A polidispersidade aumentou após a irradiação e o coeficiente de degradação de PMMA puro é de até seis vezes maior do que para os nanocompósitos. O efeito sobre os coeficientes de fotodegradação da concentração de argila, tipo argila (argila modificada por agentes tensoativos com diferentes comprimentos de cadeias de alquílica) e o solvente utilizado para a dispersão de argila orgânica, também foram estudados. / Montmorillonite clay/PMMA nanocomposites were obtained by in situ photopolymerization. Methyl methacrylate was polymerized in the presence of modified clays using thioxanthone (TX) and ethyl 4-(dimethylamino) benzoate (EDB) as photoinitiating system. The SWy-1 montmorillonite modified clays, SWy-1-C8 and SWy-1-C16, were prepared by ion exchange with octyltrimethylammonium bromide (C8) and hexyltrimethylammonium bromide (C16), respectively. X-ray diffraction indicated that clay/PMMA composites have intercalated or exfoliated structures, or even a mixture of exfoliated and partially intercalated structure layers. The structure of each particular nanocomposite depends on the clay loading and the solvent used for the preparation.The influences of organoclay loading, solvent nature and clay type on thermal and mechanical properties were studied by thermogravimetric analysis and dynamic mechanical analysis. All the nanocomposites prepared in acetonitrile exhibited improvement in their thermal stability, mainly due to the interaction between the clay and the polymer which is maximized by the exfoliated clay structure. In the case of PMMA and nanocomposites synthesized in ethanol, the thermal stability of polymer and nanocomposites remained practically the same once the clay structure is predominantly of the intercalated type. It was observed that the factors that most influenced the polymerization rate were the concentration of clay and type of solvent. The clay provides the formation of microenvironments that stabilizes the excited state of the initiator forming free radicals and consequently increasing the polymerization rate. The use of acetonitrile, which is a better solvent for PMMA gave the lowest molar weight. The photooxidative degradation of clay/PMMA nanocomposites has been investigated using size exclusion chromatography (SEC). Evidence was found that PMMA and composites degrade by random chain scissions. The polydispersity increases after irradiation and the degradation rate coefficient for pure PMMA is up to 6 times larger than that for the composites. The effect on the photodegradation rate coefficients of the clay content, clay type (clay modified by surfactants with different lengths of alkyl chains) and solvent used for dispersion of organic clay were also studied. The relationship of these parameters on the photodegradation process was statistically evaluated using a two-level factorial design.
59

Simulation of Cerenkov radiation for second harmonic generation and experimental generation and experimental characterization of MNA/PMMA/quartz thin film waveguides.

January 1995 (has links)
by Lui Bong Chun, Richard. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references. / Abstract / Acknowledgment / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background for the Project --- p.1 / Chapter 1.1.1 --- Interests in Blue-Green Laser --- p.1 / Chapter 1.1.2 --- Progress of Blue-Green Laser --- p.2 / Chapter 1.2 --- The Aim of the Project --- p.3 / Chapter 1.3 --- Overview the Remaining Parts of this Thesis --- p.4 / Chapter 1.4 --- References --- p.6 / Chapter Chapter 2 --- Sum Frequency Generation --- p.8 / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.2 --- Sum Frequency Generation --- p.8 / Chapter 2.2.1 --- Theoretical Background for Sum Frequency Generation --- p.9 / Chapter 2.2.2 --- The Coupled Wave Equations for SFG --- p.13 / Chapter 2.2.3 --- Phase Matching Considerations --- p.16 / Chapter 2.3 --- References --- p.18 / Chapter Chapter 3 --- Cerenkov Radiation --- p.19 / Chapter 3.1 --- Introduction --- p.19 / Chapter 3.2 --- The Properties of Cerenkov Radiation by Using TM Mode --- p.21 / Chapter 3.2.1 --- Refractive Index Notation --- p.23 / Chapter 3.2.2 --- Fundamental Wave TM Guides Mode --- p.23 / Chapter 3.2.3 --- Second Harmonic TM Radiation Mode --- p.24 / Chapter 3.2.4 --- Efficiency of SHG --- p.25 / Chapter 3.3 --- Simplified Model Analysis of Cerenkov Radiation in TE Mode --- p.29 / Chapter 3.4 --- Simulation --- p.33 / Chapter 3.4.1 --- Modeling the LiNb03 --- p.33 / Chapter 3.4.2 --- Modeling an Asymmetric Slab Waveguide ´ؤPMMA doped with MNA on Fused Quartz --- p.37 / Chapter 3.4.3 --- Modeling a Symmetric Slab Waveguide ´ؤPMMA doped with MNA on Fused Quartz --- p.42 / Chapter 3.5 --- References --- p.47 / Chapter Chapter 4 --- Ellipsometry --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- General Principles --- p.49 / Chapter 4.3 --- Basic Operation --- p.50 / Chapter 4.4 --- The Optical Constants of the Bulk Materials --- p.51 / Chapter 4.5 --- Calculation the Refractive Index of the Substrates --- p.53 / Chapter 4.6 --- Ellipsometric Theory for the Thin Film --- p.57 / Chapter 4.7 --- Measurement the Refractive Index and the Thickness of the Thin Film --- p.59 / Chapter 4.7.1 --- Data --- p.62 / Chapter 4.7.2 --- Discussions --- p.73 / Chapter 4.8 --- Calculation the Refractive Index of the thin Film by Considering as a Bulk Material --- p.78 / Chapter 4.9 --- References --- p.80 / Chapter Chapter 5 --- Prism Coupling --- p.81 / Chapter 5.1 --- Introduction --- p.81 / Chapter 5.2 --- Coupling of a Plane Wave --- p.82 / Chapter 5.3 --- Numerical Approach for the Calculation of the Coupling Efficiency --- p.85 / Chapter 5.4 --- Experiment --- p.88 / Chapter 5.4.1 --- Experimental Setup --- p.88 / Chapter 5.4.2 --- Experimental Result and Discussions --- p.90 / Chapter 5.5 --- References --- p.92 / Chapter Chapter 6 --- Conclusion --- p.93 / Chapter Chapter 7 --- Future Plans --- p.96 / Chapter 7.1 --- Simplified Model of Corona Poling --- p.96 / Chapter 7.2 --- Advanced Models of Poling --- p.98 / Chapter 7.2.1 --- Slab Waveguide --- p.98 / Chapter 7.2.2 --- Channel Waveguide --- p.99 / Chapter 7.3 --- References --- p.100 / Chapter Appendix 1 --- Materials' Descriptions --- p.A-l / Chapter A.1.1 --- 2-Methyl-4-Nitoaniline --- p.A-1 / Chapter A.1.2 --- Poly ( Methyl Methacrylate ) --- p.A-3 / Chapter A.1.3 --- References --- p.A-4 / Chapter Appendix 2 --- Fabrication Procedures --- p.A-5 / Chapter A.2.1 --- Cleaning the Apparatus --- p.A-5 / Chapter A.2.2 --- Cleaning the Substrate --- p.A-5 / Chapter A.2.3 --- Thin film Fabrication --- p.A-5 / Chapter A.2.4 --- Thin Film Removal --- p.A-6 / Chapter A.2.5 --- References --- p.A-6 / Chapter Appendix 3 --- Alpha Step --- p.A-7 / Chapter A.3.1 --- Introduction --- p.A-7 / Chapter A.3.2 --- Experimental Setup --- p.A-8 / Chapter A.3.3 --- Experimental Results --- p.A-9 / Chapter A.3.3.1 --- Thin Film of PMMA without Dopant --- p.A-9 / Chapter A.3.3.2 --- Thin Film of PMMA doped with MNA --- p.A-19 / Chapter A.3.4 --- Discussions --- p.A-27 / Chapter A.3.5 --- References --- p.A-28 / Chapter Appendix 4 --- Scanning Electron Microscope --- p.A-29 / Chapter A.4.1 --- Scanning Electron Microscope --- p.A-29 / Chapter A.4.2 --- Reference --- p.A-30 / Chapter Appendix 5 --- Gaussian Beam & Coordinate System Transformation --- p.A-31 / Chapter A.5.1 --- Gaussian Beam in a Homogeneous Medium --- p.A-31 / Chapter A.5.2 --- Transformation of the Coordinate Systems --- p.A-32 / Chapter A.5.3 --- Reference --- p.A-32 / Chapter Appendix 6 --- Waist Size Measurement of Gaussian Beam --- p.A-33 / Chapter A.6.1 --- Waist Size Measurement of Gaussian Beam --- p.A-33 / Chapter A.6.2 --- References --- p.A-34 / Chapter Appendix 7 --- Quasi Phase Matching --- p.A-35 / Chapter A. 7.1 --- Introduction --- p.A-35 / Chapter A.7.2 --- Basic Concept of QPM --- p.A-36 / Chapter A.7.3 --- References --- p.A-38 / Chapter Appendix 8 --- Program Listing --- p.A-41 / Chapter A.8.1 --- Program Listing ( Chapter 3 ) --- p.A-41 / Chapter A.8.1.1 --- Program 3.1 (transcendental.m ) --- p.A-41 / Chapter A.8.1.2 --- Program 3.2 (linbo3.m) --- p.A-42 / Chapter A.8.2 --- Program Listing ( Chapter 4 ) --- p.A-45 / Chapter A.8.2.1 --- Program 4.1 ( ellipsometry.m ) --- p.A-45 / Chapter A.8.3 --- Program Listing ( Chapter 5 ) --- p.A-47 / Chapter A.8.3.1 --- Program 5.1 ( parameter.m ) --- p.A-47 / Chapter A.8.3.2 --- Program 5.2 ( coupling.m ) --- p.A-49 / Chapter A.8.3.3 --- Program 5.3 ( v_3_amp.m ) --- p.A-50 / Chapter A.8.3.4 --- Program 5.4 ( input_profile.m ) --- p.A-51
60

Sistemas adesivos a base de acrilamidas : síntese, caracterização e desenvolvimento / Acrylamides adhesive system : synthesis, characterization and development.

Rodrigues, Stefani Becker January 2016 (has links)
O objetivo deste estudo foi sintetizar e caracterizar monômeros metacrilamidas, desenvolver, caracterizar e avaliar as propriedades de sistemas adesivo convencional de três passos. Foram sintetizadas bis(metacrilamida)s e tris(metacrilamida) e caracterizadas por espectroscopia de Infravermelho por Transformada de Fourier (FTIR), Ressonância Magnética Nuclear (RMN) de 1H e 13C, por Cromatografia Líquida de Alta Eficiência com Espectrometria de Massas (UHPLC-QTOF-MS) e Calorimetria Exploratória Diferencial Modulada (MDSC). Quatro bis(metacrilamidas), (1) N,N’-(propane-1,3-diyl)bis(N-ethyl-2-methylacrylamide), (2) N,N’-(octane-1,8-diyl)bis(2-methylacrylamide), (3) N,N’-(butane-1,4-diyl)bis(2-methacrylamide) e (4) N,N’-(1,4 phenylene)bis(2-methylacrylamide)monômero (1), (2), (3) e (4), e uma tris(metacrilamida) TMA, foram sintetizadas. Pela análise de FTIR-ATR foram observadas as bandas correspondentes ao estiramento do grupo C=O (1660 cm-1), C=C (1610 cm-1), N-H (3300 cm-1) e C-N (1520 cm-1). As análises de RMN identificaram a presença das ligações duplas referentes aos grupos metacrilamidas em deslocamentos químicos entre 5,3 e 5,8 ppm para 1H e entre 120 e 140 ppm para 13C.Os valores de massa exata m/z foram: 267,2068, 281,2222, 225,1595, 245,1283 e 351,2385 g/mol para os monômeros (1), (2), (3), (4) e TMA, respectivamente. A cinética de polimerização do TMA e dos adesivos experimentais contendo 2-hidroxietil acrilamida (HEAA) ou 2-hidroxietil metacrilato (HEMA) com as seguintes formulações foram investigadas por meio de DSC-PCA, n=3: TMA33%/HEAA66%, TMA50%/HEAA50%, TMA66%/HEAA33%, TMA50%/HEMA50%, BisGMA/HEAA/TMA e BisGMA/HEMA.Características e propriedades mecânicas das resinas adesivas BisGMA/HEAA/TMA e BisGMA/HEMA foram avaliadas por resistência coesiva (UTS, n=5), degradação em solvente (ΔKHN, n=5), ângulo de contato (n=5), microtração (μTBS, n=20) e análise de fratura. Um primer a base de acrilamidas foi desenvolvido (H2O/HEAA/AMPS) (2-acrylamida-2-methilpropano ácido sulfônico) para ser utilizado no grupo experimental com metacrilamidas. Os valores de pH e ângulo de contato do primer experimental foram comparados com o primer do ScotchBond Multi-purpose (grupo controle). O monômero (1) resultou em um monômero amarelo claro de baixa viscosidade, entretanto, não apresentou foto ou termopolimerização. A energia de ativação determinada pelo método de Kissinger foi – 165,8 kJmol-1; -182,7 kJmol-1 e -156,7 kJmol-1 para os monômeros (2), (3) e (4), respectivamente. Sistemas adesivos convencionais de três passos a base de metacrilamidas e a base de metacrilatos foram desenvolvidos. Resinas adesivas contendo somente HEAA e TMA (TMA33%/HEAA66%, TMA50%/HEAA50%, TMA66%/HEAA33%) apresentaram grau de conversão abaixo de 40% após 40 s de fotoativação. Alto grau de conversão (acima de 60%) só foi encontrado para as resinas adesivas BisGMA/HEAA/TMA e BisGMA/HEMA e sem diferença significativa entre elas, p>0,05. Os valores de UTS (BisGMA/HEMA- 67,7 ±5 MPa e BisGMA/HEAA/TMA- 60,5 ±7 MPa), μTBS (BisGMA/HEMA- 57 ± 14 MPa e BisGMA/HEAA/TMA- 53,1 ±15 MPa) e ângulo de contato (BisGMA/HEMA- 39,5 ±9 e BisGMA/HEAA/TMA- 46,7 ±15) não apresentaram diferença estatística, p>0.05. O primer experimental apresentou um valor pH mais baixo (2,7) bem como de ângulo de contato (18,5 ±5) em relação ao comercial (pH-4 e θ-33,5 ±4). A síntese proposta para os monômeros (1), (2), (3), (4) e TMA foi caracterizada nesse trabalho. Um primer somente com acrilamidas foi desenvolvido e a presença do novo monômero TMA na resina adesiva BisGMA/HEAA permitiu a formulação de um sistema adesivo convencional de três passos sem a presença do monômero HEMA. / The aim of this study was synthesized and characterizes methacrylamides monomers, development, characterizer and evaluated the properties of 3-step etch-and-rise adhesive system. Bis(methacrylamide)s and tris(methacrylamide) were synthesized. The monomer structures were confirmed by 1H and 13C Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR-ATR), Ultra-high liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) and modulated differential scanning calorimetry (mDSC). Four bis(methacrylamide)s monomers (1) N,N’-(propane-1,3-diyl)bis(N-ethyl-2-methylacrylamide), (2) N,N’-(octane-1,8-diyl)bis(2-methylacrylamide), (3) N,N’-(butane-1,4-diyl)bis(2-methacrylamide) and (4) N,N’-(1,4 phenylene)bis(2-methylacrylamide) and one tris(methacrylamide), TMA, were synthesized. All IR spectra of the monomers showed the C=C axial deformation at 1610 cm-1. The 1H NMR spectra the olefinic hydrogens were observed at 5.3 an 5.8 ppm and in the 13C NMR, the vinylic carbons at 120 and 140 ppm. The exact m/z values were: 267.2068, 281.2222, 225.1595, 245.1283 and 351.2385 g/mol for monomers (1), (2), (3), (4) and TMA respectively. Monomer (1) not presented photo (DSC-PCA) or thermal polymerization. The activation energy determined using Kissinger methodology was: - 165.8 kJmol-1; -182.7 kJmol-1 and -156.7 kJmol-1 for monomers (2), (3) and (4), respectively. 3-step adhesive systems with methacrylamides and methcrylates were development. Kinetics of photopolymerization of TMA and experimental adhesive resin containing 2-hydroxyethylacrylamide (HEAA) or 2-hydroxyethylmethacrylate (HEMA) in the following formulations: (TMA 33%/HEAA 66%, TMA 50%/HEAA 50%, TMA66%/HEAA33%, TMA50%/HEMA50%, BisGMA66%/HEAA24%/TMA10% and BisGMA66%/HEMA33%) were investigated through DSC-PCA. Characteristics and mechanical properties for BisGMA 66%/HEAA 24%/TMA 10% and BisGMA 66%/HEMA 33% adhesives were evaluated with ultimate tensile strength (UTS, n=5), softening in solvent (ΔKHN, n=5), contact angle (n=5), microtensile bond strength (μTBS, n=20) and failure analysis. A primer was also formulated with H2O/HEAA/AMPS (2-acrylamido-2-methylpropane sulfonic acid) and the pH and contact angle value were verified and compared to commercial ScotchBond primer. Adhesive resin with HEAA and TMA (TMA33%/HEAA66%, TMA50%/HEAA50%, TMA66%/HEAA33%) showed lower conversion and polymerization rate after 40 s of light activation. Higher conversion (up to 60%) was found for BisGMA/HEAA/TMA and BisGMA/HEMA adhesive resin without significant difference between adhesive resin, p>0.05. UTS (BisGMA/HEMA- 67.7 ±5 MPa e BisGMA/HEAA/TMA- 60.5 ±7 MPa), immediate μTBS (BisGMA/HEMA- 57 ± 14 MPa e BisGMA/HEAA/TMA- 53.1 ±15 MPa), ΔKHN (BisGMA/HEMA- 56 ± 7 e BisGMA/HEAA/TMA- 64 ±4) and contact angle (BisGMA/HEMA- 39.5 ±9 e BisGMA/HEAA/TMA- 46.7 ±15) showed no statistical difference, p>0.05. The experimental primer presented more acidity pH (2.7) and lower contact angle (18.5 ±5) when compared to commercial primer (pH- 4 e θ- 33.5 ±4). A new acrylamide based-primer was formulated and the presence of the new tris(methacrylamide) monomer (TMA) was enable the preparation of a 3-step etch-and-rise adhesive system without HEMA monomer.

Page generated in 0.0689 seconds