• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 130
  • 10
  • 9
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 375
  • 223
  • 121
  • 120
  • 118
  • 115
  • 55
  • 51
  • 45
  • 44
  • 41
  • 27
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Novel carbene complexes with pyrrole ligands

Olivier, Andrew John 24 February 2006 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Chemistry))--University of Pretoria, 2006. / Chemistry / unrestricted
102

Tiasoolderivate as ligande vir karbonielkomplekse van die groep 6 metale en yster

Marais, Eugene Krige 23 August 2012 (has links)
M.Sc. / This study comprised the synthesis and characterization of new carbonyl carbene complexes of chromium, molybdenum and tungsten, prepared from thiazole precursors. In addition, the preparation and characterization of coordination compounds of chromium, tungsten and iron with new thiazole dithiocarboxylester ligands are reported.
103

Water treatment using electrohydraulic discharge system

Mouele, Emile Salomon Massima January 2014 (has links)
>Magister Scientiae - MSc / In South Africa, water pollution problems have continued to increase due to increasing anthropogenic activities. The increasing number of organic contaminants in various water sources can be attributed to industrial development, population growth and agricultural run- off. These activities have impacted negatively on the availability and accessibility to sustainable clean water resources, exposing citizens to water borne diseases such as cholera, diarrhoea and typhoid fever; commonly reported among children. Advanced oxidation technologies such as dielectric barrier electrohydraulic discharge (EHD), also referred to as dielectric barrier discharge (DBD), have the ability to decompose persistent organics and eliminate microbes. DBD offers advantages such as efficiency, energy saving, rapid processing, use of few or no chemicals, and non-destructive impact on the ecosystem. The system is also capable of generating ozone, hydrogen peroxide, singlet oxygen, superoxide radicals, hydroxyl radicals and other active species. The combination of these reactive species has been reported to degrade biological and chemical pollutants rapidly and efficiently. In this study, the DBD system was optimized by investigating the effect of physico-chemical, electrical parameters and reactor configurations on Methylene Blue (MB) decolouration efficiency. The physico-chemical parameters included MB concentration, solution pH and conductivity, solution volume, NaCl electrolyte concentration in the electrode compartment and air flow rate. As for electrical parameters, the effects of voltage, electrode type and size on MB decolouration efficiency were studied. The effect of the aforementioned parameters on MB decolouration efficiency was assessed by varying one parameter at a time. The following physico-chemical parameters: time (from 0 - 60 minutes), pH (2.5 - 10.5), solution conductivity (5 - 20 mS/cm), MB concentration (0.5 – 10 mg/L), solution volume (500 – 2000 mL), NaCl electrode electrolyte concentration (10 – 50 g/L) and air flow rate (2– 4 L/min) were varied in their respective ranges under the applied experimental conditions: reactor air gap 2 mm, solution volume 1500 mL, NaCl electrolyte concentration of 50 g/L in the electrode compartment, voltage 25 V (7.8 kV), airflow rate 3 L/min, 0.5 mm silver electrode and a running time of 60 minutes. As for electrical parameters, voltage (from 20 - 25 V), electrode type (copper, silver and stainless steel) and electrode diameter (0.5 – 1.5 mm) were also altered individually at the applied experimental conditions. The reactor air gap was varied from 2 to 6 mm. At the same experimental conditions, the free reactive species generated mainly H2O2 and O3, were detected and quantified using the Eisenberg and indigo methods, respectively. The optimum physico-chemical parameters were found to be MB concentration 5 mg/L, concentration of NaCl electrolyte used in the central compartment of the DBD reactor 50 g/L, solution pH 2.5, solution conductivity 10 mS/cm, air flow rate 3 L/min, solution volume 1500 mL and an optimum contact time of 30 minutes. The optimum electrical parameters were found to be: applied voltage 25 and 1.5 mm silver electrode. The following parameters MB concentration, solution conductivity and pH, applied voltage and reactor configuration significantly affected MB decolouration efficiency compared to parameters such as solution volume, the inlet air flow rate, electrode type and size and NaCl electrolyte concentration in the electrode compartment, which were less effective in enhancing MB decolouration. Moreover, for all DBD experiments performed at the applied experimental conditions, complete decolouration of MB was achieved in the first 30 minutes. However, trends between the optimized parameters and MB decolouration efficiency were mostly observed after 10 minutes. The optimized DBD system reduced the treatment time from 30 to 20 minutes without any chemical additives. Moreover, at 5 mg/L MB under the applied optimum conditions, it was proved that besides 99% of MB decolouration reached after 60 minutes, 53% of total organic carbon (TOC) removal was also achieved. The chemical oxygen demand (COD) characterizing MB toxicity was less than 5 mg/L before as well as after the DBD experiment. After 10 minutes of experiment under the following conditions: Applied voltage 25 V, MB concentration 5 mg/L, solution pH (in between 6.04 and 6.64), solution volume 1500 mL, air flow rate 3 L/min, 0.5 mm silver electrode and a contact time of 60 minutes, about 3.73 x 10-5 mol/L H2O2 was produced which decreased to 2.93 x 10-5 mol/L 10 minutes later, while O3 concentration was initially very low and could not be detected. However, 0.5 mol/L of O3 was detected after 20 minutes of operating time, thereafter, H2O2 concentration decreased continuously with time while that of O3 fluctuated as the treatment time increased. Likewise, the energy density for the production of free reactive species reached 0.87 g/ kWh in the first 10 minutes due to the presence of chromophoric functional groups such as =N+(CH3)2 in MB structure that had to be destroyed. Thereafter, the energy consumption decreased progressively to zero with an increase in treatment time due to the destruction of =N+(CH3)2 groups in MB structure with time. The correlation between the rise in the of H2O2 concentration and energy density after 10 minutes was probably due to dissociation of OH- OH bonds in H2O2 by UV light to yield OH radicals which unselectively may have attacked MB dye. Thus, MB decomposition in the current DBD reactor was mostly initiated by H2O2 and O3. The irradiation of H2O2 by UV light generated in the DBD system was found to accelerate dye decomposition in the first 30 minutes of the experiment. The UV-vis analysis of treated MB samples confirmed that the complete decolouration of MB achieved in the first 30 minutes was due to the destruction of the chromophoric [=N+(CH3)2] group in Methylene blue structure, while the FT-IR confirmed the presence of traces of various functional groups such as C=C, C=O, C=N, NH, NH3, NO2, etc. characteristics of carboxylic acids, amines, amides, nitrogen based compounds (salts), aliphatic and unsaturated by-products remaining in the bulk solution after treatment. The salts analysis after treatment showed that 16 mg/L of nitrates and nitrites and 1.1mg/L of sulphates mainly originating from air and MB decomposition were present in the treated samples. The EHD/DBD system used in this study offers an approach to partially treat water/wastewaters and its optimization was able to significantly enhance the decomposition of the target MB dye as indicated by the reduction of total organic carbon (TOC) from 8.3 mg/L to 3.9 mg/L. Compared to previous research, this study successfully optimised a complete double cylindrical dielectric barrier discharge (DBD) reactor at ambient condition without any chemical additives.
104

Beyond Traditional Superatom Ligands and Cores

Doud, Evan Ambrose January 2020 (has links)
This dissertation summarizes my research in the Roy group on the development, synthesis, and study of new N-heterocyclic carbene (NHC) based ligands and nickel phsophinidene core compositions of molecular clusters, also known as superatoms. Chapter 1 introduces superatoms as atomically precise and discreet building blocks for use in the design and synthesis of novel materials. A brief history as well as selected synthetic strategies of superatoms will be introduced. The relevant materials properties of superatoms as well as their dependence on core composition and ligand structure will be discussed. Next, the use of superatoms with specialized or functionalizable ligands to synthesize new materials will be demonstrated. This chapter details the importance of the superatom ligands and core composition is the foundation that the subsequent chapters builds upon in developing these two areas. Chapter 2 introduces a functionalized NHC as a potential superatom ligand. While not necessary for all superatom ligands, ligands that enable electronic access to the superatom core are attractive. In this chapter, the conductance of potential NHC based ligands are probed through the scanning tunneling microscope-based break-junction (STM-BJ) method. A novel method of forming single molecule junctions in situ was used and these ligands are found to display a length dependent conductance with strong coupling to the Au electrode, confirming their potential use as ligands for superatoms. Chapter 3 describes the nature of the NHC–M bond in self-assembled monolayers (SAMs) on a Au(111) surface using high-resolution spectroscopy and theoretical calculations. This study was performed as a result of challenges and questions encountered during the work of Chapter 2. The results obtained from this study explore an important structure-function relationship of NHC ligands and have broader impact in materials chemistry beyond superatoms. Chapter 4 explores the synthesis of superatoms with NHC ligands beyond simple imidazolium-based NHCs. This chapter describes the two primary synthetic techniques used and the synthesis of NHC-ligated superatoms. This work is also ongoing and characterization is limited to crude single crystal X-ray diffraction structures and select NMRs. Finally, Chapter 5 details the use of uncommon organocyclophosphine reagents to synthesis novel nickel-phosphinidene molecular clusters, a potential new superatom. In this chapter the synthesis of a family of nickel-phosphinidene molecular clusters is described and studied. A potential application of these molecular clusters is explored through the thermolytic conversion to the industrially relevant Ni2P.
105

Hydrothermal carbonization of anaerobically digested effluent of sewage sludge to synthesize hydrochar for remediation of methylene blue dye from water

Sivaprasad, Shyam January 2021 (has links)
No description available.
106

Exploiting High Surface Area Polymer Gels for Dye Adsorption

Chen, Qihang 28 April 2021 (has links)
No description available.
107

Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

Torano, Aniela Zarzar 05 1900 (has links)
Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it produced consistent maximum adsorption values and adsorption equilibrium constants. Preliminary experiments demonstrated the potential to recover and reuse the silica microspheres by washing with NaOH and organic solvents. The preferential adsorption of oil micro-droplets onto the surface of functionalized hollow silica microspheres was evidenced. However, preparing synthetic produced water that was stable enough to carry out kinetics experiments remained a challenge.
108

Expansion of Superatom Synthesis, Substitution, and Fusion via Carbene Chemistry

Hochuli, Taylor Jerome January 2022 (has links)
This dissertation describes my efforts in the Nuckolls lab to expand synthetic methods of wet-chemistry superatom synthesis, superatom surface ligand and core modification, and assembly of superatoms into materials with useful, cumulative properties. This work builds off of previous work from the Nuckolls lab describing photolabile ligand substitution and use of this technique to covalently bind superatoms to form various materials such as polymers and weaved sheets. This work will focus on the Chevrel-type M₆E₈L₆ metal-chalcogenide cluster Co₆Se₈, modification of its outer stabilizing ligands, and fusion of its core with other Co₆Se₈ superatoms to form fused dimers. Chapter 1 consists of a review of background material that forms a foundational basis for this work. The field of superatoms and superatomic materials will first be covered to contextualize this work in the field at large. Then, the prior work on wet-chemistry synthesis of Co₆Se₈ superatoms with replaceable, photolabile carbonyl (CO) ligands will be discussed. Finally, previous dimensionally-controlled assembly of materials using these carbonylated superatoms will be covered. Chapter 2 consists of the discovery of a masking carbene ligand generated from trimethylsilyl diazomethane (TMSD) and its use to create a new, electronically-coupled superatom dimer species (Co₁₂Se1₆(PEt₃)₁₀) that shows evidence of quantum confinement akin to nanoparticles and nanoparticle assemblies. Chapter 3 consists of new ligand substitution and methods to synthetically functionalize the fused dimer introduced in Chapter 2. The reactive carbene-ligated cluster is used to add new functional groups that were previously inaccessible to these cobalt-selenide clusters. New multi-carbene clusters are demonstrated as well as the use of site-differentiated clusters to form functionalized fused dimers from bis-carbonyl clusters. Chapter 4 consists of an investigation of the carbene cluster and insights that may be used in the future to finally expand cluster fusion into a chain. A reversible bridging of the carbene ligand based on temperature and oxidation state is analyzed experimentally and computationally. This information is used to synthesize a series of new carbene clusters which are used to try and assemble electronically-coupled, fused Co₆Se₈ superatomic materials.
109

Heats of mixing for liquid systems containing chloride, hydroxyl and methylene groups : measurement and prediction by an analytical group solution model

Kalu, Egwuonwu Ukoha. January 1975 (has links)
No description available.
110

FREE RADICAL POLYMERIZATION OF NOVEL COPOLYMER; ETHYLENE-CO-DIETHYL METHYLENE MALONATE COPOLYMERS

Foster, Sydney 20 October 2021 (has links)
Ethylene copolymers are widely used as packaging materials, adhesives and specialty polymers for well-regarded cost savings, durability, chemical resistance, and hot melt character. This work examines the use of diester monomers known as malonates to determine the plausibility of utilizing an uncommon monomer class for producing novel ethylene copolymers. Ethylene is copolymerized with diethyl methylene malonate—a simple malonate representative of more complex and highly modified malonate monomers and macromers—to produce ethylene-co-diethyl methylene malonate in a range of molecular weights. Ethylene-co-diethyl methylene malonate is analyzed to determine physical properties such as glass transition temperature, chain length and monomer incorporation. Successful copolymerization occurred under a range of temperatures and pressures in tetrahydrofuran, diethyl carbonate, and dimethyl carbonate. The produced polymers were found to have a molecular weight of 15-46 kg/mol, a glass transition temperature of 7°C, a melting temperature of 108°C, and a cold crystallization temperature of 64°C. The high concentration of a radical source inhibitor in the diethyl methylene malonate monomer solution negatively impacted molecular weight and ethylene incorporation.

Page generated in 0.0535 seconds