Spelling suggestions: "subject:"mii"" "subject:"mini""
191 |
Regulace transkripce mikroRNA klastru miR-17-92 v průběhu diferenciace makrofágů. / Transcriptional regulation of miR-17-92 microRNA cluster during macrophage differentiation.Rybářová, Jana January 2010 (has links)
miR-17-92 cluster (Oncomir1) encodes seven microRNAs (miRNA, miR) regulating many biological processes including proliferation, differentiation or apoptosis. Overexpression of microRNAs encoded by miR-17-92 cluster is found in a number of tumors including acute and chronic myeloid leukemias (Dixon-McIver et al., 2008; Li et al., 2008; Venturini et al., 2007). Myeloid progenitors express miR-17-92 cluster at a high level, while macrophage differentiation associates with its downregulation. Our laboratory found, that miR-17-92 cluster is repressed by transcription factor Early growth response 2 (Egr2) upon differentiation of primary myeloid PUER progenitors, induced with transcription factor PU.1. Aim of this thesis is to further test the abovementioned data by preparing a reporter vectors set, carrying various fragments of miR-17-92 putative promoter, which enables us to study regulation of transcription of miR-17-92 cluster. This task complicated by presence of increased GC content of the miR-17-92 promoter was successfully accomplished resulting in amplification of eight fragments containing the various parts of miR-17-92 promoter including region -3.3 to 0 kb relative to the start of miR-17-5p sequence, that were inserted into pGL3 reporter vector. Transfection of pGL3 reporter vector carrying...
|
192 |
Nuclear hormone receptor regulation of microRNAsBethke, Axel 06 October 2009 (has links)
Progression of metazoans through different developmental programs requires temporal control that is achieved by molecules originating from endocrine tissues that diffuse throughout the whole body of the animal to coordinate program execution by activating cell specific gene expression patterns. These programs then define cascades of successive, distinct developmental stages or the choice between alternative fates for the same stage. A model for this developmental control is found in the nematode C. elegans, where environmental cues signal through insulin and TGF-beta cascades to regulate the daf-12/nuclear hormone receptor (NHR) ligand synthesis that then coordinates organism wide developmental timing and fate choice. For cell intrinsic aspects of C. elegans temporal control of development, microRNAs play an important role but their connection to organism wide endocrine control is unknown. This work shows how the DAF-12/NHR directly activates let-7 family microRNAs during the L3 stage to repress L2 stage activator hbl-1 to prevent L2 stage programs from reoccurring. The interaction of upstream transcription factors with the downstream cis-regulatory elements in promoters of the let-7 family microRNAs are further analyzed in detail and identify potential DAF-12 coregulators that might connect daf-12 endocrine signaling also to later stage developmental control. These observations are the first to integrate microRNAs into establishedendocrine signaling cascades. In addition they reveal specific details about how organism wide upstream, endocrine signaling pathways induce downstream cell intrinsic changes of gene expression and developmental progression. This work postulates a "molecular switch" that actively drives stage transitions, consisting of a NHR that directly activates microRNAs to actively repress mediators of old stages while directly activating translation of protein coding genes mediating the new stage.
|
193 |
Conception de miARN artificiels basée sur la caractérisation de la boucle de régulation miR-20/E2FDe Guire, Vincent 07 1900 (has links)
No description available.
|
194 |
Atténuation des oxydations phosphorylantes et induction d'une réponse cellulaire hypoxique : effêt de l'[alpha]-tocophérol-acétate et de miR-210 sur les cellules stromales mesenchymateuses / Attenuation of oxidative phosporylation and induction of hypoxic celle response : [alpha]-tocopherolacetate and miR-210 effects on mesenchymal stromal cellsLoncaric, Darija 15 November 2019 (has links)
Dans cette thèse, nous avons combiné les approches des cultures single-cell, de cytométrie en flux,des analyses de métabolisme énergétique et de génétique moléculaire afin d’explorer les effets del’Acétate d’α-Tocopherol (α-TOA) sur les cellules stromales mésenchymateuses (MStroC) et leurs souspopulations fonctionnelles (cellules souches et progénitrices mésenchymateuses). L’autre but était de tester une molécule de miR-210 par rapport à son utilisation potentielle comme « hypoxia mimicking molecule ». Après avoir démontré l’hétérogénéité de la population MStroC et conclu que la population de premier passage est appropriée pour des expérimentations ultérieures, nous avons trouvé que l’α-TOA présentait un effet positif sur le maintien de la capacité proliférative élevée des cellules souches mésenchymateuses. Cet effet est accompagné d’une atténuation de l’activité de la chaîne de transport d’électrons (ETC) qui pourrait d’autre part expliquer l’accroissement modéré du niveau des Reactive Oxygen Species mitochondriales (mtROS) que nous avons détectées. L’augmentation du niveau de mtROS pourrait être associée à une dégradation de protéine HIF-1 dans la population MStroC exposée à l’α-TOA. Bien que nous n’ayons pas détecté d’augmentation compensatoire de la glycolyse, les phénomènes observés représentent en partie la réponse cellulaire complexe au faible niveau d’O2. Il a été établi que ce phénomène était relié au maintien de primitivité des cellules souches. Le mécanisme exact reste à clarifier ainsi que son potentiel translationnel. En outre, nous avons apporté la preuve que miR-210 fait partie intégrante de la réponse des MStroC à la faible concentration en O2. Dans cette étude, nous avons montré que l’augmentation de l’expression de miR-210 sur une période courte (jusqu’à 24 heures) et après une période étendue (jusqu’à 72 heures) d’exposition des MStroC à une faible concentration en O2. De plus, nous avons prouvé que ce micro ARN pouvait être régulé par les deux facteurs transcriptionnels HIF-1 et HIF-2, nous laissant penser que ceci faisait partie intégrante de la réponse des MStroC à une faible concentration en O2. Jusqu’à présent, nos données suggèrent que miR-210 est digne d’intérêt en tant que bonne molécule « hypoxia mimicking ». / In this thesis, we combined approaches of single-cell cultures, flow-cytometry, energetic metabolismanalysis and molecular genetics in order to get insight in the effects of α-Tocopherol-Acetate (α-TOA)on Mesenchymal Stromal Cells (MStroC) and their functional subpopulations (mesenchymal stem and progenitor cells). The other aim was to test a miR-210 molecule with respect to its potential use as hypoxia mimicking molecule. After defining MStroC population heterogeneity and concluding that the first passage population is convenient for further experiments, we demonstrated that α-TOA exhibits a positive effect on the maintenance of high proliferative capacity of mesenchymal stem cells. This effect could be associated with an attenuation of electron transport chain (ETC) activity, which, on the other hand could explain moderate increase in the level of mitochondrial Reactive Oxygen Species (mtROS) we detected. The increase in mtROS level could be associated with a decreased HIF-1 alpha protein degradation in MStroC exposed to α-TOA. Although we did not detect a compensatory increase in glycolysis, the observed phenomena depict part of a complex cellular response to the low O2 that is demonstrated to be related with maintenance of stem cell primitiveness. The exact mechanism remains to be elucidated as well as its translational potential. In addition, we provided new evidences that miR-210 is integral part in MStroC response to low O2. In the study, we showed increased in miR-210 expression in a short-term (up to 24 hours) and after extended (up to 72 hours) MStroC exposed to low O2. Moreover, we demonstrated that this micro- RNA could be regulated by both HIF-1 and HIF-2 transcriptional factors, suggesting it as integral part of MStroC response to low O2. So far, our data suggest that miR-210 is worthy to be considered as good hypoxia mimicking molecule.
|
195 |
Immunobiology and Novel Therapeutics in Acute Graft-versus-Host DiseaseZitzer, Nina Celia 08 October 2018 (has links)
No description available.
|
196 |
Immunoregulation of host macrophage responses by <i>Mycobacterium tuberculosis</i>Ni, Bin 25 September 2014 (has links)
No description available.
|
197 |
Action of CDK Inhibitor PHA-848125 in ER-negative Breast Cancer with MicroRNA-221/222 OverexpressionCheung, Douglas Guy January 2017 (has links)
No description available.
|
198 |
Role of microRNAs in HepatocarcinogenesisWang, Bo 18 June 2012 (has links)
No description available.
|
199 |
The role of CADM1 in energy and glucose homeostasisMatthäus, Dörte 11 February 2014 (has links)
Mehr als 300 Millionen Menschen sind weltweit von Diabetes betroffen, die Mehrheit davon leidet an Typ-2-Diabetes. Typ-2-Diabetes ist durch eine Insulinresistenz charakterisiert, welche meistens durch Übergewicht und Adipositas verursacht wird. Diese Insulinresistenz kann zunächst durch eine erhöhte pankreatische Insulinsekretion kompensiert werden, jedoch können langfristig die pankreatischen beta-Zellen den erhöhten Insulinbedarf nicht mehr decken. Dies verursacht einen starken Anstieg der Blutglucosespiegel und stellt den Beginn der Typ-2-Diabetes Erkrankung dar. Neben genetischen Veränderungen sind Umweltfaktoren, wie erhöhte Nahrungsaufnahme und reduzierte Bewegung, wichtige Faktoren in der Pathogenese des Typ-2-Diabetes. Frühere Forschungsergebnisse zeigten eine wichtige Rolle von microRNA 375 (miR-375) im Wachstum und in der Funktion der Insulin produzierenden beta-Zellen. Die Genexpression von miR-375 ist in diabetischen Nagetieren und Menschen verändert, was auf eine wichtige Rolle dieser microRNA in der Pathogenese des Typ-2-Diabetes hindeutet. Gene, die durch miR-375 reguliert werden, wurden in den pankreatischen beta-Zellen beschrieben, jedoch ist der Mechanismus wie miR-375 das Wachstum und die Funktion der pankreatischen beta-Zellen beeinflusst noch nicht im Detail verstanden. Das Cell Adhesion Molecule 1 (CADM1) ist ein bekanntes Zielgen der miR-375 und vor allem im Gehirn als Regulator von Anzahl und Funktion der Synapsen bekannt. Da es außerdem in den pankreatischen beta Zellen exprimiert ist, könnte es auch dort an der Regulation von beta-Zellwachstum und –funktion beteiligt sein und die Glucose- und Energiehomöostase verändern. Ziel dieser Arbeit war es, in vollständig oder konditionell Cadm1-defizienten Mäusen den Einfluss von CADM1 in pankreatischen beta-Zellen und neuronalem Gewebe an der Regulation von Glucose- und Energiehomöostase zu untersuchen. / More than 300 million people world-wide are affected by diabetes, the majority suffering from type 2 diabetes. Type 2 diabetes is characterized by insulin resistance, usually caused by obesity and overweight. Enhanced pancreatic insulin secretion largely compensates insulin resistance for years. A failure of pancreatic beta-cells to meet increased insulin demands drastically increases blood glucose levels and marks the onset of type 2 diabetes. Besides environmental influences, mainly elevated food intake and reduced physical activity, also genetic mutations are important factors in the pathophysiology of type 2 diabetes. Recent literature highlights the role of microRNA 375 (miR-375) in the growth and function of pancreatic insulin-producing beta-cells. MiR-375 gene expression is regulated in diabetic humans and rodents, suggesting that this microRNA is involved in the pathogenesis of type 2 diabetes. Genes regulated by miR-375 have been described in pancreatic beta-cells. Nevertheless, the exact mechanisms how miR-375 regulates beta-cell growth and insulin secretion have not been understood. Cell adhesion molecule 1 (CADM1) is a known target of miR-375 and has mainly been described as regulator of synapse number and synaptic function in the brain. CADM1 is also expressed in pancreatic beta-cells and might regulate beta-cell growth and function and might be involved in the control of glucose and energy homeostasis. The aim of this work was to investigate whether CADM1 in pancreatic beta-cells or neuronal tissue contributes to the regulation of energy and glucose homeostasis by using total and conditional Cadm1 deficient mice. Total Cadm1 deficient (Cadm1KO) mice showed increased sensitivity to glucose and insulin as well as enhanced glucose-stimulated insulin secretion compared to littermate control mice. Elevated glucose-stimulated insulin secretion after Cadm1 depletion could be confirmed in an in vitro beta-cell model.
|
200 |
miR-33 regulates cell proliferation, cell cycle progression and liver regenerationSalinas, Daniel Cirera 15 March 2013 (has links)
Der Cholesterin-Stoffwechsel ist sehr streng auf zellulärer Ebene reguliert und ist essentiell für das Zellwachstum. MicroRNAs (miRNAs), eine Klasse nicht-kodierender RNAs, wurden als kritische Regulatoren der Genexpression identifiziert und entfalten ihre Wirkung vorwiegend auf posttranskriptioneller Ebene. Aktuelle Arbeiten aus der Gruppe um Fernández-Hernando haben gezeigt, dass hsa-miR-33a und hsa-miR-33b, miRNAs die in den Intronsequenzen der Gene für die Sterol-regulatorischen Element- Bindungsproteine (SREBP-2 und SREBP -1) lokalisiert sind, den Cholesterin-Stoffwechsel im Einklang mit ihren Wirtsgenen regulieren. Gleichermaßen inhibiert miR-33 Schlüsselenzyme in der Regulation der Fettsäureoxidation, einschließlich CROT, CPT1A, HADHB, SIRT6, AMPKα, genauso wie IRS2, eine wesentliche Komponente des Insulin-Signalwegs in der Leber. Diese Studie zeigt, dass hsa-miR-33 Familienmitglieder nicht nur Gene in Cholesterin- und Fettsäure-Stoffwechsel sowie Insulin-Signalwege regulieren, sondern zusätzlich die Expression von Genen des Zellzyklus und der Zellproliferation modulieren. miR-33 inhibiert die Expression der CDK6 und CCND1, wodurch sowohol die Zellproliferation als auch die Zellzyklusprogression verringert wird. Die Überexpression von miR-33 induziert einen signifikanten G1 Zellzyklusarrest. Durch eine Inhibierung der miR-33 Expression mittels 2''F/MOE-modifiziert Phosphorothioat-Backbone Antisense-Oligonukleotiden, wird die Leberregeneration nach partieller Hepatektomie (PH) in Mäusen verbessert, was auf eine wichtige Rolle für miR-33 in der Regulation der Hepatozytenproliferation während der Leberregeneration hinweist. Zusammengefasst zeigen diese Daten, dass Srebf/miR-33 Locus kooperieren, um Zellproliferation und Zellzyklusprogression zu regulieren, und könnte somit auch relevant für die menschliche Leberregeneration sein. / Cholesterol metabolism is tightly regulated at the cellular level and is essential for cellular growth. Cellular imbalances of cholesterol and fatty acid metabolism lead to pathological processes, including atherosclerosis and metabolic syndrome. MicroRNAs (miRNAs), a class of noncoding RNAs, have emerged as critical regulators of gene expression acting predominantly at posttranscriptional level. Recent work from Fernández-Hernando´s group and others has shown that hsa-miR-33a and hsa-miR-33b, miRNAs located within intronic sequences of the sterol regulatory element-binding protein (SREBP-2 and SREBP-1) genes, respectively, regulate cholesterol metabolism in concert with their host genes. Similarly, miR-33 targets key enzymes involved in the regulation of fatty acid oxidation including CROT, CPT1A, HADHB, SIRT6 and AMPKα, likewise, IRS2, an essential component of the insulin- signaling pathway in the liver. This study shows that hsa-miR-33 family members not only regulate genes involved in cholesterol and fatty acid metabolism and insulin signaling, but in addition modulate the expression of genes involved in cell cycle regulation and cell proliferation. Thus, miR-33 inhibited the expression of CDK6 and CCND1, thereby reducing cell proliferation and cell cycle progression. Over-expression of miR-33 induced a significant G1 cell cycle arrest and most importantly, inhibition of miR-33 expression using 2’F/MOE-modified phosphorothioate backbone antisense oligonucleotides improved liver regeneration after partial hepatectomy (PH) in mice, suggesting an important role for miR-33 in regulating hepatocyte proliferation during liver regeneration. Altogether, these data establish that Srebf/miR-33 locus may co-operate to regulate cell proliferation, cell cycle progression and may also be relevant to human liver regeneration.
|
Page generated in 0.0558 seconds