1 |
The location technology for laser diodes packagingKang, Min-Hua 07 July 2010 (has links)
This thesis details an innovative laser diode packaging method to improve the accuracy of the laser locator by modifying the location method and packaging process. This method features its simplicity in the packaging process, the capability in tweaking the rotary angle of the laser diode, and an effective solution to the scaling effect as well as the
enhancement in yield. The gripping micro-unit,consisting of a refined micro gripper together with the piezoelectric actuator and coupler,integrates a self-designed rotary adjustment and release unit to enable the micro-rectangle unit such as a laser unit to fine tune the location of the object. It works with the linear stage, platform, and image acquisition system to become the core of the proposed location system.
A series of experiments are designed to verify the functionality. A precise linear stage without the rotary axis is applied to control the locator,adjust the location of the laser, and minimize the error from equipment.
The result demonstrates its feasibility.
|
2 |
The application of Van der Waals forces in micro-material handlingMatope, S., Van Der Merwe, A. January 2010 (has links)
Published Article / This paper investigates the challenges of employing Van der Waals forces in micro-material handling since these forces are dominant in micro-material handling systems. The problems include the creation of a dust-free environment, accurate measurement of the micro-force, and the efficient picking and placing of micro-work pieces. The use of vacuum suction, micro-gripper's surface roughness, geometrical configuration and material type are presented as alternatives to overcome the challenges. An atomic force microscope is proposed for the accurate measurement of the Van der Waals force between the gripper and the micro-work piece.
|
3 |
Elastomer-based Cellular Micromechanical Stimulators for Mechanobiological StudyWang, Qian 16 September 2014 (has links)
No description available.
|
4 |
Robust control for manipulation inside a scanning electron microscope / Commande robuste pour la manipulation in situ microscope électronique à balayage -Robust control for manipulation inside a scanning electron microscopeGaudenzi de faria, Marcelo 17 February 2016 (has links)
Cette thèse étudie le problème de nano-positionnement à l'intérieur d'un microscope électronique à balayage (MEB). Pour obtenir des informations de position avec rapidité et précision, une installation dédiée composée d’un vibromètre placé à l'intérieur du MEB a été mise en œuvre. Cette approche diffère de méthodes basées sur le traitement d'images, car elle permet de saisir des données en temps réel sur le comportement dynamique des structures étudiées. Dans une première étude, les perturbations mécaniques agissant à l'intérieur de la chambre à vide du microscope ont été caractérisées et leurs sources ont été identifiées. Cela a démontré comment les vibrations mécaniques externes et les bruits acoustiques peuvent influer largement sur les composants à l'intérieur du MEB par couplage mécanique, limitant ainsi la précision des manipulateurs. Dans un deuxième temps, une micro-pince du commerce a été étudiée. Une différence entre ses comportements dans l'air et dans le vide a été mise en évidence, ce qui a permis d'obtenir deux modèles dynamiques pour cet organe terminal, un pour chaque environnement. Deux lois de commande ont été proposées (commande H-infini et commande basée sur un observateur d'état étendu), afin d'obtenir en temps réel un positionnement précis dans le vide, et d'atténuer les effets des perturbations mécaniques externes. Les résultats ont été validés en simulation et expérimentalement. / This work studies the nano-positioning problem inside the scanning electron microscope (SEM). To acquire fast and accurate positional information, a dedicated setup was implemented consisting of a vibrometer placed inside the SEM. This approach differs from methods based on image processing, as it allows to capture real-time data on the dynamic behavior of structures. In a first study, the mechanical disturbances acting inside the microscope’s vacuum chamber were characterized and its sources were identified. This demonstrated how external mechanical vibrations and acoustic noises can largely influence the components inside the SEM through mechanical coupling, limiting the effective positioning precision of manipulators. Next, a commercial micro-gripper was studied, both in air and in vacuum, and the differences between its response were highlighted. This allowed to obtain two dynamic models for this end-effector, one for each environment. Two control laws were proposed (H-infinity control and Extended State Observer based control) for the system, to obtain a real-time, precise positioning in the vacuum environment and to attenuate the effects of the external mechanical disturbances. Results were demonstrated through simulation and experimental validation.
|
Page generated in 0.0454 seconds