• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 11
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Gradient calculations of non-orthogonal meshes in the finite volume method / N. van der Westhuizen.

Van der Westhuizen, Nicolé January 2013 (has links)
The handling of gradient calculations on non-orthogonal meshes in the Finite Volume Method (FVM) is important in the modelling of complex geometries, since different implementation methods have an influence on the accuracy and the stability of the solution. The application in the current study is the numerical solution of heat conduction in a complex geometry. It finds relevance in many engineering applications such as the Micro-Channel Heat Exchanger (MCHE) that acts as a recuperator in a High Temperature Reactor (HTR) power generation cycle. A program based on the FVM was developed in Excel for the solution of the diffusion equation on a non-orthogonal mesh. A test case of heat conduction in a rectangular block, meshed with a tetrahedral mesh, was solved with the Excel code. The same test case was solved with OpenFOAM. The results of the two codes were compared. Small differences were found and their origins were traced to slightly different implementation methods. Knowledge of the differences in implementation between the two codes resulted in a better understanding of the aspects that influenced accuracy and stability. Computations on meshes with the presence of mesh skewness and non-orthogonal mesh lines at boundaries were performed and an accompanying decrease in accuracy was observed. The results showed that the standard FVM as implemented in the Excel code and in OpenFOAM will need advanced methods to compensate for mesh skewness and non-orthogonality found at boundaries. During the study, a deeper knowledge and understanding was gained of the challenge of obtaining accurate solutions of heat conduction on non-orthogonal meshes. This knowledge may lead to the overall improvement of the simulation of heat transfer models in general and for the MCHE specifically. / Thesis (MIng (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013.
22

Pressure loss associated with flow area change in micro-channels

Chalfi, Toufik Yacine 06 July 2007 (has links)
Pressure drop across miniature-scale flow disturbances, including abrupt flow area changes, is an important source of error and confusion in the literature. Such pressure drops are frequently encountered in experiments, where they are often estimated using methods and correlations that have been developed based on experimental data obtained in conventional systems. However, physical arguments as well as the relatively few available experimental observations indicate that such pressure drops in microchannel systems are likely to be different than what is known about similar phenomena in conventional flow systems. Experimental data dealing with pressure drop associated with two-phase flow across abrupt flow area changes in microchannels are scarce, however, and the available data are insufficient for the development of reliable predictive methods. In this investigation, experiments were conducted using a test section consisting of two capillaries, one with 0.84 mm, and the other with 1.6 mm inner diameters. A multitude of pressure transducer ports were installed along the two capillaries, and allowed for the measurement of the pressure gradients over the entire test section. The test section allowed for the measurement of frictional pressure gradients in the two straight channels, as well as pressure drops caused by the flow area expansion and contraction depending on the flow direction, for single-phase as well as two-phase flows. These measurements were performed over a wide range of parameters, using air as the gaseous phase, and room-temperature water as the liquid phase. The single-phase flow data were compared with existing conventional correlations, and with predictions of CFD simulations using the Fluent computer code.
23

Instability and Failure in Aluminum Multi-Channel Tubing

Miller, Harvey (Beau) S., Jr. 18 April 2006 (has links)
No description available.
24

Cavitation dans un micro-canal modèle d'injecteur diesel : méthodes de visualisation et influence de l'état de surface

Mauger, Cyril 30 May 2012 (has links)
Ce travail de thèse repose sur l’élaboration et l’exploitation d’un banc expérimental dédié à l’étude d’un écoulement cavitant dans un micro-canal, pour des conditions proches de celles de l’injection diesel. Ce banc a été développé dans le but de faire varier différents paramètres, notamment l’état de surface des parois du canal. Plusieurs méthodes optiques (imagerie en transmission, strioscopie et interférométrie) ont été mises en place afin de visualiser l’écoulementet d’en extraire des informations quantitatives. Les images en transmission permettent de visualiser la formation de vapeur dans le canal. Elles sont sensibles au gradient de masse volumique et font ainsi apparaître des couches de cisaillement, des structures turbulentes et des ondes de pression. Leur interprétation est rendue délicate par cette richesse en information et nécessite de recourir aux autres techniques optiques. Il ressort de ce travail que la cavitation se forme dans la couche de cisaillement, sous l’effet combiné de la dépression engendrée par le décollement à l’entrée du canal et de tourbillons générés par des instabilités dans la couche de cisaillement. La confrontation des résultats obtenus à l’aide des différentes techniques optiques, notamment les champs de pression reconstruits à partir des interférogrammes, montre que la zone de formation de la cavitation ne correspond pas à la zone de minimum de pression moyenne de l’écoulement. Il apparaît aussi que certaines bulles de vapeur ont une durée de vie bien supérieure à ce que prévoient les modèles de dynamique de bulles. On suspecte que des fluctuations de pression de l’ordre de 20 bar, associées à la turbulence, contribuent à la prolongation de ces temps de vie. Un algorithme de PIV, appliqué à des couples d’images en transmission, permet de montrer une augmentation importante des fluctuations de vitesse en sortie de canal lorsque les poches de vapeur se développent. Cette augmentation devient plus significative quand les poches atteignent60% de la longueur du canal. L’écoulement cavitant est essentiellement piloté par le nombre de cavitation K. Les conditions d’apparition et de développement de la cavitation ont été quantifiées dans différents canaux, en faisant varier des paramètres géométriques, la pression amont ou la température. L’influence de la hauteur du canal et du rayon de courbure à l’entrée de l’orifice est conforme aux données de la littérature. Une dépendance du nombre de cavitation critique Kcrit à l’apparition de la cavitation au nombre de Reynolds Re est montrée. Enfin, l’influence de l’état de surface des parois a fait l’objet d’une étude spécifique. Cette partie du travail demande probablement à être complétée mais l’état de surface semble avoir une influence sur la cavitation. D’après les cas étudiés au cours de cette thèse, une surface rugueuse ou texturée avec des motifs suffisamment espacés peut retarder l’apparition de la cavitation et une rugosité limitée (jusqu’à Ra = 0,7 μmici) peut favoriser le développement des poches de vapeur. / This PhD study is based on the design and use of an experimental set-up dedicated to the study of a cavitating flow in a micro-channel in conditions close to Diesel injection. The experimental set-up has been designed so that different parameters may vary, in particular channel wall roughness. Several optical systems (backlit imaging, Schlieren imaging and interferometry) have been developed in order to visualize the flow and get quantitative data.Backlit images make it possible to visualize vapor formation in the channel. They are sensitive to density gradients and therefore show shear layers, turbulent structures as well as pressure waves. Since they are rich in information, it is tricky to interpret them and the use of other optical methods is required.This study shows that cavitation appears in the shear layer due to the combined effect of the depression induced by flow detachment at the channel inlet and vortexes caused by instabilities in the shear layer. The comparison of the results obtained from the different optical systems – in particular the pressure fields rebuilt from interferograms – indicates that cavitation does not appear where flow pressure is the lowest in average.It is noticed that some vapor bubbles have a life expectancy much higher than predicted by bubble dynamics models. It is thought that pressure variations of about 20 bar, associated to turbulence, may play a role in this phenomenon.A PIV algorithm applied to couples of backlit images shows that velocity fluctuations largely increase at the channel outlet when vapor cavities develop. The increase gets more significant when cavities are 60 % the channel length.The cavitating flow is mainly dependent on the cavitation number K. The conditions of cavitation inception and development have been quantified in different channels, and geometrical parameters, upstream pressure or temperature have varied. The influence of channel height and radius inlet on cavitation is in line with the literature. At cavitation inception, it is shown that the critical cavitation number Kcrit is dependent on Reynolds number Re. Finally, the influence of wall roughness has been the subject of a specific study. Although it would need to be further investigated, roughness seems to have an influence on cavitation. The samples used during this PhD work suggest that roughness or patterns sufficiently spaced out may delay cavitation inception, and limited roughness (up to Ra = 0.7 μm here) may enhance vapor cavity development.
25

Turbulence in Soft Walled Micro Channels

Srinivas, S S January 2016 (has links) (PDF)
In comparison to the flow in a rigid channel, there is a multi-fold reduction in the transition Reynolds number for the flow in a micro channel when one of the walls is made sufficiently soft, due to a dynamical instability induced by the fluid-wall coupling. The flow after transition is characterized using Particle Image Velocimetry (PIV) in the x − y plane where x is the stream-wise direction and y is the cross-stream co-ordinate along the small dimension of the channel of height 0.2 − 0.3mm. For the two different soft walls of shear modulus 18 kPa and 2.19 kPaused here, the transition Reynolds number is about 250 and 330 respectively. The deformation of the microchannel due to the applied pressure gradient is measured in the experiments, and is used to predict the laminar mean velocity profiles for comparison with the experimental results. The mean velocity profiles in the microchannel are in quantitative agreement with those predicted for the laminar flow before transition, but are flatter near the centerline and have higher gradients at the wall after transition. The flow after transition is characterized by a mean velocity profile that is flatter at the center and steeper at the walls in comparison to that for a laminar flow. The root mean square of the stream-wise fluctuating velocity shows the characteristic sharp increase from the wall and a maximum close to the wall, as observed in turbulent flows in rigid-walled channels. However, the profile is asymmetric with a significantly higher maximum close to the soft wall in comparison to that close to the hard wall, and the Reynolds stress is found to be non-zero at the soft wall, indicating that there is a stress exerted by fluid velocity fluctuations on the wall. The turbulent energy production profile has a maximum at the soft wall, in contrast to the flow at a rigid surface where the turbulent energy production is zero at the wall (due to the zero Reynolds stress). The maximum of the root mean square of the velocity fluctuations and the Reynolds stress (divided by the fluid density) in the soft-walled microchannel for Reynolds numbers in the range 250-400, when scaled by suitable powers of the maximum velocity, are comparable to those in a rigid channel at Reynolds numbers in the range 5000-20000. The near-wall velocity profile shows no evidence of a viscous sub-layer for (yv∗/ν) as low as 2, but there is a logarithmic layer for (yv∗/ν) up to about 30, where the von Karman constants are very deferent from those for a rigid-walled channel. Here, v∗ is the friction velocity, ν is the kinematic viscosity and y is the distance from the soft surface. . The surface of the soft wall in contact with the fluid is marked with dye spots to monitor the deformation and motion along the fluid-wall interface. The measured displacement of the surface in the stream-wise direction, which is of the order of 5 − 12µm, is consistent with that calculated on the basis of linear elasticity. Low-frequency oscillations in the displacement of the surface are observed after transition in both the stream-wise and span-wise directions, indicating that the turbulent velocity fluctuations are dynamically coupled to motion in the solid. Modification of soft-wall turbulence in a micro channel due to the addition of small amounts of polymer The modification of soft-wall turbulence in a microchannel due to the addition of small amounts of polymer is experimentally studied using Particle Image Velocimetry (PIV) to measure the mean and the fluctuating velocities. The micro channels are of rectangular cross-section with height about 160 µm, width about 1.5 mm and length about 3 cm, with three walls made of hard Poly-dimethylsiloxane (PDMS) gel, and one wall made of soft PDMS gel with an elasticity modulus of about 18 kPa. A dynamical instabilty of the laminar flow due to the fluid-wall coupling, and a transition to turbulence, is observed at a Reynolds number of about 290 for the flow of pure water in the soft-walled microchannel (Verma and Kumaran, J. Fluid Mech., 727, 407-455, 2013). Solutions of polyacrylamide of molecular weight 5 × 106 and mass fraction up to 50 ppm, and of molecular weight 4 × 104 and mass fraction up to 1500 ppm, are used in the experiments. In all cases, the solutions are in the dilute limit be-low the critical concentration where the interactions between polymer molecules become important. The modification of the fluid viscosity due to addition of polymer molecules is small; the viscosity of the solutions with the highest polymer concentration exceed those for pure water by about 10% for the polymer with molecular weight 5 × 106, and by about 5% for the polymer with molecular weight 4 × 104. Two distinct types of flow modifications below and above a threshold mass fraction for the polymer, cTHRESHOLD , which is about 1 ppm for the polyacrylamide with molecular weight 5 × 106, and about 500 ppm for the polyacrylamide with molecular weight 4 × 104. As the polymer mass fraction increases up to the threshold value, there is no change in the transition Reynolds number, but there is significant turbulence attenuation the root mean square velocities in the stream wise and cross-stream directions decrease by a factor of 2, and the Reynolds stress decreases by a factor of 4 in comparison to that for pure water. When the polymer concentration increases beyond the threshold value, there is a decrease in the decrease in the transition Reynolds number by nearly one order of magnitude, and a further decrease in the intensity of the turbulent fluctuations. The lowest transition Reynolds number of about 35 for the solution of polyacrylamide with molecular weight 5 × 106 and mass fraction 50 ppm. For the polymer solutions with the highest concentrations, the fluctuating velocities in the stream wise and cross-stream direction are lower by a factor of 5, and the Reynolds stress is lower by a factor of 10, in comparison to pure water. Despite the significant turbulence attenuation, a sharp increase in the intensity of the fluctuating velocities is evident at transition for all polymer concentrations. Transitions to deferent kinds of turbulence in a channel with soft walls The flow in a rectangular channel with walls made of soft polyacrylamide gel is studied to examine the effect of soft walls on transition and turbulence. The width of the channel is much larger than the height, so that the flow can be considered approximately two-dimensional, the wall thickness is much larger than the channel height (smallest dimension), the bottom wall is fixed to a substrate and the top wall is unrestrained. The fluid velocity is measured using Particle Image Velocimetry, while the wall motion is studied by embedding beads in the soft wall, and measuring the time-variation of the displacement both parallel and perpendicular to the surface. As the Reynolds number increases, two different flow regimes are observed in sequence. The first is the ‘soft-wall turbulence’ resulting from a dynamical instability of the base flow due to the fluid-wall coupling. The flow in this case exhibits many of the features of the turbulent flow in a rigid channel, including the departure of the velocity profile from the parabolic profile, and the near-wall maxima in the stream-wise root mean square fluctuating velocity. However, there are also significant differences. The turbulence intensities, when scaled by suitable powers of the mean velocity, are much larger than those after the hard-wall laminar-turbulent transition at a Reynolds number of about 1000. The Reynolds stress profiles do not decrease to zero at the walls, indicating that the wall motion plays a role in the generation of turbulent fluctuations. There is no evidence of a viscous sub-layer close to the wall to within the experimental resolution. The mean velocity profile does satisfy a logarithmic law close to the surface within a region between 2-30 wall units from the surface, but the von Karman constants are very different from those for the hard-wall turbulence. The wall displacement measurements indicate that there is no observable motion perpendicular to the surface, but displacement fluctuations parallel to the surface are observed after transition, coinciding with the onset of velocity fluctuations in the fluid. The fluid velocity fluctuations are symmetric about the center line of the channel, and they show relatively little downstream variation after a flow development length of about 5 cm. As the Reynolds number is further increased, there is a second ‘wall flutter’ transition, which involves visible downstream traveling waves in the top (unrestrained) wall alone. Wall displacement fluctuations of low frequency (less than about 500 rad/s) are observed both parallel and perpendicular to the wall. The mean velocity profiles and turbulence intensities are asymmetric, with much larger turbulence intensities near the top wall. There is no evident logarithmic profile close to either the top or bottom wall. Fluctuations are initiated at the entrance of the test section, and the fluctuation intensities decrease with downstream distance, the fluctuation intensities first rapidly increase and then decrease as the Reynolds number is increased. For a channel with relatively small height (0.6 mm), the transition Reynolds number for the soft-wall instability is lower the hard-wall transition Reynolds number of about 1000, and the laminar flow becomes unstable to the soft-wall instability leading to soft-wall turbulence and then to wall flutter as the Reynolds number is increased. For a channel with relatively large height (1.8 mm), the transition Reynolds number for the soft-wall instability is higher than 1000, the flow first undergoes the hard-wall laminar-turbulent transition at a Reynolds number of about 1000, the turbulent flow undergoes the soft-wall transition leading to soft-wall turbulence, and then to wall flutter.
26

Simulations And Experiments Of Plasma-Induced Effects In Silicon Detectors

Gomez L, Ana Maria January 2023 (has links)
When an atomic nucleus undergoes fission, two fragments with different mass and kinetic energy are emitted. The highly unstable fission fragments (FFs) evaporate prompt neutrons soon after the nucleus splits. A precise measurement of both, the mass yield distribution of the FFs and the average prompt neutron emission, $\bar{\nu}$, is important not only for current nuclear technologies but also for the development of future technologies such as Generation IV nuclear power plants. Moreover, the experimental determination of the mass yield distributions, both pre- and post-neutron emission, is valuable for testing fission models. Additionally, a precise measurement of the average neutron multiplicity as a function of the FFs mass, <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?$%5Cbar%7B%5Cnu%7D(A)$" data-classname="equation" data-title="" />, is crucial in the understanding of how the excitation energy is shared between nascent FFs.  The VElocity foR DIrect particle identification spectrometer (VERDI) is designed to achieve pre- and post-fission mass distributions with resolutions between 1-2 u. VERDI is a double-energy double-velocity instrument that consists of two arms. On each arm is operated one Microchannel Plate detector (MCP) for the collection of the FFs start time and up to 32 Passive Implanted Planar Silicon (PIPS) detectors for the stop time and energy detection of the FFs. However, challenges in the experimental measurements with VERDI arise due to the high degree of ionization (plasma) in the detector material from the interaction with the FFs. The plasma causes a delay in the charge carriers' migration for the signal start, known as the plasma delay time effect (PDT). Furthermore, the recombination of charge carriers in the plasma causes a shrinking in the signal's height, known as pulse height defect (PHD). This phenomenon leads to inaccuracies in the measurement of FFs mass distributions and increased systematic uncertainties.  Previous studies on PDT and PHD have shown varying behaviors across different detector types, which motivated dedicated studies in the type of PIPS detectors used in VERDI. An experimental campaign to characterize the PDT and PHD in PIPS detectors was conducted in the LOHENGRIN recoil separator, which is part of the ILL nuclear facility in Grenoble, France. Measurements of FFs in a range of masses between 80 u and 149 u, with energies between 20 MeV to 110 MeV, were taken to fully characterize six PIPS detectors. The resulting PDT and PHD values were 1 ns to 4 ns and 2 MeV to 10 MeV respectively. The PDT and PHD exhibited consistent energy and mass dependencies across the detectors, which enables the possibility of an event-by-event correction of VERDI data. In this thesis, the basis for discussing the results of the studies of the PDT and PHD effects will be presented.
27

Gas-Solid Fluidization: ECVT Imaging and Mini-/Micro-Channel Flow

Wang, Fei January 2010 (has links)
No description available.
28

Rheo-NMR studies of viscoelastic secondary flows in ducts of non-circular cross-section

Schroeder, Christian Berthold Karl 07 May 2012 (has links)
The existence of hydrodynamically developed, laminar Viscoelastic Secondary Flows (VSFs) of non-Newtonian fluids in straight ducts of non-circular cross-section was proposed in the 1950's. VSFs have since been observed sporadically, and only once with a velocimetric technique. Using axial and transverse full flow-field velocity-position raster maps made with Rheological Nuclear Magnetic Resonance (Rheo-NMR), Newtonian and non-Newtonian fluid flows were quantified in Hagen-Poiseuille and Power Law contexts, over more than two orders of magnitude of flow rate, in ducts of circle, square, triangle, and pentagon cross-section. VSF was reliably and repeatedly observed to occur at between one part in 130 and one part in 600 of the primary axial flow velocity. Velocity measurements ranged from <10 µm/s to approximately 30 cm/s, suggesting a velocity dynamic range >3E4 without optimization. To obtain VSF flow direction information, a novel flow directional phantom was developed and characterized. Aqueous solutions of Polyethylene Oxide (PEO), Viscarin GP-109NF, Viscarin GP-209NF (V209), Hyaluronan (HA) in a Phosphate-Buffered Saline-like solvent, and an aqueous Polyethylene Glycol/PEO-based Boger fluid were investigated. Axial data was corroborated with related data gathered by an independent method. Basic simulations corroborated the VSF observations. Duct hydraulic diameters (>= 1.6 mm) approached the micro-channel regime. VSF detections in HA --- synovial fluid's principal component --- and V209 were novel, as were observations of some artifacts which were subsequently characterized and corrected. The detection of VSF in HA represents the first experimental evidence suggesting that its second normal stress (N_2) is comparable to that of better-characterized fluids. In the first application of a new VSF-based method, a particular Boger fluid's constant viscosity and, in the square duct, its lack of VSF were used with established criteria to suggest that the fluid's N_2 approached zero. The development of a rudimentary, but versatile and inexpensive home-built velocimetric spectrometer is detailed, as are several new components. An exhaustive VSF literature review is included. The remarkable transverse velocimetric ability of Rheo-NMR in both optically opaque and transparent system is highlighted, suggesting that perhaps the technique might represent, in both micro-channels and conventional ducts, the gold-standard in flow velocimetry.

Page generated in 0.0357 seconds