• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Fabrication, and Evaluation of On-chip Micro-supercapacitors

Beidaghi, Majid 31 May 2012 (has links)
Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs-1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm-2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm-2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.
2

Metal-reduced graphene oxide for supercapacitors and alternating current line-filters

Wu, Zhenkun 21 September 2015 (has links)
We design a facile approach to investigate the role benzene derivatives play in the capacitance enhancement of graphene-based supercapacitors. The main reason is attributed to the pseudocapacitance of the aromatic molecules rather than the former one. Meanwhile, we find that the para and ortho substituted benzene derivatives contribute much more than the meta substituted ones. In addition, we fabricate an all-solid-state flexible MSC based on metal-reduced GO. The as-fabricated MSC shows high areal capacitance and excellent reliability, which makes it a promising energy storage candidate for wearable electronics. Based on the work of MSC, we achieve a flexible ac line-filter that is not only competitive against commercial product but also suitable for mass production. Meanwhile, we produce a three-dimensional graphene/polydimethylsiloxane composite that gives a thermal resistance as small as 14 mm2K/W, which is comparable to commercial products. What’s more, a convenient transient program that saves much time is developed to measure the thermal resistance.
3

The Road towards Integrated Micro-Supercapacitor: From 2D to 3D Device Geometries

Li, Fei 14 June 2021 (has links)
The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip micro-supercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors (ECs) and microbatteries (MBs) in various applications. Recently, planar two-dimensional (2D) MSCs, composed of isolated thin-film microelectrodes with extremely short ionic diffusion path and free of separator on a single substrate, have become particularly attractive because they can be directly integrated with microelectronic devices on the same side of a flexible substrate to act as a standalone microsized power source. However, the areal capacities and energy densities of the 2D MSCs are commonly limited by the low voltage window and the thin layer of the electrode materials. Obviously, integrating more active material into cleverly designed three-dimensional (3D) electrode architectures will effectively increase the areal performance within a limited footprint area in spite of some loss of flexibility and cycling stability. However, it is still a big challenge to effciently and cost-effectively fabricate on-chip MSCs with high electro-chemical performance and abundant electrode structures. Here, three types of MSCs including graphene-based 2D planar MSCs, on-chip 3D interdigital MSCs and self-assembled 3D tubular MSCs were fabricated, respectively. The fabrication process, electrode materials structure and morphology, electrochemical performance, mechanical properties, integration process and difficulty, and practical application of these 2D and 3D devices are studied in detail.
4

Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window

Zhang, Panpan, Zhu, Feng, Wang, Faxing, Wang, Jinhui, Dong, Renhao, Zhuang, Xiaodong, Schmidt, Oliver G., Feng, Xinliang 07 May 2018 (has links) (PDF)
No description available.
5

Kohlenstoffpräkursoren für die Herstellung strukturierter Mikro-Superkondensatoren und multifunktionaler Energiespeicher

Lochmann, Stefanie 17 May 2021 (has links)
Das moderne digitale Leben bringt eine steigende Nachfrage an immer kleineren kompakten Geräten mit höheren Anforderungen an die Leistungsfähigkeit und Multifunktionalität mit sich. Der in diesem Zusammenhang fortschreitende Prozess der Miniaturisierung findet damit in immer mehr Bereichen Anwendung. Der aktuelle Trend geht hierbei zu immer kleineren autonomen Systemen, welche vor allem einen wartungsfreien Betrieb mit guter Langlebigkeit garantieren sollen. Hierbei kommt die Integration von zusätzlichen Energiespeichereinheiten wie Mikro-Superkondensatoren (MSC) zum Einsatz. Die so genannten elektrochemischen Doppelschichtkondensatoren können durch ihren rein elektrostatischen Energiespeichermechanismus innerhalb weniger Sekunden vollständig geladen und entladen werden und ermöglichen somit hohe Leistungsdichten bei gleichzeitig hohen Lebensdauern. Strukturierungen im Mikrometerbereich können vor allem durch additive Druckmethoden (3D-Druck, Inkjet-Druck) realisiert werden, welche zudem eine sehr hohe Variabilität in der Zielgeometrie bieten. Ein weiteres vielversprechendes Verfahren hinsichtlich hoher Produktionsdurchsätze und einem geringen Preisaufwand stellt die weiche Lithographie dar. Sie ermöglicht Drucke mit hoher Auflösung bis in den Nanometerbereich. Aus diesem Grund soll im ersten Teil dieser Arbeit die Nanoprägelithographie (NIL) als softlithographische Technik für die Herstellung strukturierter Kohlenstoffelektroden genutzt werden. Die gewählten Elektrodenstrukturen zeichnen sich vor allem durch ihre hohe Auflösung im Sub-Mikrometer-Bereich aus und stellen damit die derzeit kleinsten literaturbekannten interdigitalen Kohlenstoffelektroden dar. Zielstellung dieser Arbeit war zunächst die Entwicklung verschiedener flüssiger, druckbarer Kohlenstoffpräkursoren. Die erhaltenen Mikrostrukturen wurden anschließend für die Anwendung in MSCs optimiert. Im ersten Teil der Arbeit konnten in diesem Sinne drei verschiedene Präkursorsysteme entwickelt werden. Das erste, Saccharose-basierte System setzte sich aus einer wässrigen Saccharoselösung zusammen, welche schwefelsäurekatalysiert zu Kohlenstoff umgesetzt wurde. Die zusätzliche Einbringung von Stickstoffgruppen in den Kohlenstoff erfolgte durch die Zugabe von Harnstoff. Das zweite Präkursorsystem basierte auf einem umweltfreundlichen Resol aus Phloroglucinol und Glyoxylsäure. Durch Weichtemplatverfahren unter Nutzung von Pluronic F127 gelang zudem eine Einbringung geordneter Porosität in die Kohlenstoffmatrix. Eine schnelle Assemblierung und Polymerisation der Edukte konnten durch den EISA-Prozess ermöglicht werden, sodass der Präkursor auch für die NIL genutzt werden konnte. Bei dem dritten System handelte es sich um einen Polymerpräkursor, welcher durch Auflösung von Polyacrylnitril in DMF hergestellt wurde. Dieses Polymersystem eignete sich zudem auch sehr gut als Matrixmaterial für die Einbettung von Nanopartikeln. Im Rahmen dieser Arbeit wurde das System genutzt, um Polymerhohlkugeln einzubetten und diese in situ unter vollständiger Strukturerhaltung zu Kohlenstoff umzusetzen. Alle drei Präkursorsysteme konnten im nächsten Schritt erfolgreich in der Nanoprägelithographie angewendet werden. Die entsprechenden Strukturen besaßen Liniengrößen von 250 bis 500 nm mit Abständen zwischen 1 und 10 μm. Für alle Geometrien wurden hierbei vollständige und stabile Strukturen erhalten. Nach der Umsetzung der Präkursoren zu Kohlenstoff blieben die Strukturen weiterhin erhalten. Das Saccharose-basierte System wurde im Anschluss genutzt, um einen Hydrogel-Elektrolyten auf Basis von PVA und Schwefelsäure zu optimieren. Im Vergleich zu einem herkömmlichen wässrigen Elektrolyten konnten deutlich höhere Kapazitäten erreicht werden. Für die wässrige Li2SO4-Lösung wurde so eine Device-Kapazität von 0,02 mF cm-2 ermittelt, welche durch die Verwendung eines PVA/H2SO4-Gelelektrolyten auf 0,3 mF cm-2 gesteigert werden konnte. Zudem zeigte der Gel-Elektrolyt deutliche Vorteile bei der Langzeitstabilität und Auslaufsicherheit. Weiterhin wurden auch die Leitadditive und Konzentrationen variiert und getestet. Hierbei stellten sich Schwefelsäure als am besten geeignetes Additiv und ein Massenverhältnis von m(PVA): m(H2SO4) von 1:1 als optimale Konzentration heraus. Mit diesem Elektrolyten wurden im Anschluss die Einflüsse verschiedener Liniengrößen und Fingerabstände untersucht. Aufgrund des insgesamt besten Druckergebnisses zeigte die IDE500/10 auch die größten Kapazitäten. Weiterhin bewirkte eine N-Dotierung des Kohlenstoffes eine Verbesserung in der Benetzbarkeit und Leitfähigkeit der Elektroden, wodurch für alle Strukturen die Kapazität weiter gesteigert werden konnte. Auch der Resol-basierte Präkursor konnte genutzt werden, um Superkondensatoren herzustellen. Für beide Präkursorvarianten mit und ohne Templat wurden auch funktionsfähige Mikro-Superkondensatoren hergestellt. Hierbei konnte ebenfalls eine deutliche Kapazitätserhöhung durch die Einbringung des Templats beobachtet werden. Damit wurde gezeigt, dass auch in den Mikrostrukturen Porosität oder Oberflächenrauigkeit durch das Tensid erzeugt wird. Hierbei erhöhte sich die Flächenkapazität sogar um das Fünffache von 0,4 auf 2,0 mF cm-2. Mit dem dritten Präkursorsystem basierend auf PAN, konnte für IDE500/10 eine Flächenkapazität von 0,4 mF cm-2 erreicht werden. Auch die Integration der Hohlkugeln ermöglichte die Herstellung leitfähiger Elektroden. Für dieses System wurde eine Flächenkapazität von 0,2 mF cm-2 erreicht. Im Hinblick auf die Miniaturisierung ist oft die Größenbeschränkung des gesamten Bauteils limitierend für die erreichbare Leistung. Aus diesem Grund liegt der Fokus aktuell auch auf der Entwicklung multifunktionaler Bauteile. Weiterhin geht der Trend in Richtung intelligenter Systeme, welche beispielsweise biologische Prozesse nachahmen können. Im zweiten Teil dieser Arbeit sollte auf Basis dieser Entwicklungen ein schaltbarer Mikro-Superkondensator mit typischen Charakteristiken eines Feldeffekttranistors entwickelt werden. In diesem Sinn wurden die Einflüsse verschiedener Kenngrößen untersucht und ein Zusammenhang von Schaltverhalten und Architektur soll gefunden werden. Auf Basis des Saccharose-abgeleiteten Kohlenstoffes wurden mit Hilfe des piezoelektrischen Inkjet-Drucks Interdigitalelektroden angefertigt. Als dritte Gate-Elektrode wurde ein Kohlenstofffilm des gleichen Materials genutzt und im Schichtaufbau mit der Interdigitalelektrode und dem Hydrogel-Elektrolyten assembliert. Mit diesem Gate-Cap konnte der W-Cap mit sehr hohen Schaltraten an- und ausgeschaltet werden. Wird eine Bias-Spannung von -0,5 V genutzt, so kann die Kapazität auf 1,8 % der Ausgangskapazität verringert werden. Weiterhin wurde der Einfluss verschiedener Vorschubgeschwindigkeiten und Bias-Potentialen untersucht. Grundsätzlich eignen sich kleine Vorschubgeschwindigkeiten sehr gut, um effektivere Schaltraten zu generieren. Für unterschiedliche Gate-Spannungen konnten so unterschiedliche Schaltraten erhalten werden, sodass sich ein vergleichbares Verhalten mit einem FET ergab. Hierbei konnte zudem gezeigt werden, dass bereits für eine Spannung von -0,2 V eine Verringerung auf unter 3 % der Ausgangskapazität erhalten wurde. Dies ist vor allem für potenzielle Anwendungen in implantierbaren Mikrosystemen vorteilhaft, welche mit sehr kleinen Betriebsspannungen arbeiten. Die Langzeitstabilität des Gate-Caps wurde zum einen durch sehr schnelles wiederholtes Schalten als auch über einen Langzeitbetrieb im Aus-Zustand gezeigt. Hierbei zeigte sich eine sehr gute Reproduzierbarkeit über mehrere Sequenzen. Über die verschiedenen Schaltversuche und die zusätzliche Variation des Elektrolyten unter Nutzung verdünnter Schwefelsäure konnte der Ablauf des vor allem protonengesteuerten Schaltprozesses näher betrachtet werden. Hierbei zeigte sich, dass vor allem ein unidirektionales Schaltverhalten vorliegt und der Gate-Cap nur durch das Anlegen negativer Potentiale effektiv geschalten werden kann.
6

Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window

Zhang, Panpan, Zhu, Feng, Wang, Faxing, Wang, Jinhui, Dong, Renhao, Zhuang, Xiaodong, Schmidt, Oliver G., Feng, Xinliang 07 May 2018 (has links)
No description available.
7

Development of novel ionic liquid electrolytes for metal oxide-based micro-supercapacitors

Shamsudeen Seenath, Jensheer 04 1900 (has links)
Thèse en cotutelle (avec l'Université Toulouse 3 - Paul Sabatier) en Science des matériaux et Electrochimie / Avec le développement des systèmes électroniques embarqués se pose la question de la miniaturisation des dispositifs de stockage d’énergie. De nos jours, cette fonction est principalement assurée par des micro-batteries. Ces composants possèdent cependant une faible puissance disponible, une durée de vie limitée et un domaine de fonctionnement en température restreint. Les “micro-supercondensateurs” sur puce permettraient de s’affranchir de ces limitations, mais ils ne sont aujourd’hui qu’au stade de la recherche universitaire avec des densités d’énergie bien inférieures à celles des micro-batteries. L’énergie et la puissance stockées dans un supercondensateur sont proportionnelles au carré de la fenêtre de potentiel, qui dépend elle-même de la stabilité électrochimique de l’électrolyte utilisé. L’électrolyte joue ainsi un rôle prépondérant sur les propriétés des supercondensateurs (tension, gamme de température, courant de fuite, durée de vie…). Cette thèse vise à développer des liquides ioniques protiques et aprotiques dédiés aux micro-supercondensateurs pseudocapacitifs à base d'oxydes métalliques (RuO2, MnO2). Les électrolytes à base de liquides ioniques présentent des propriétés intéressantes, notamment une faible pression de vapeur saturante, une stabilité aux hautes températures, ainsi qu’une large fenêtre de potentiel. Ils contribuent ainsi à améliorer la densité d’énergie surfaciques, principal problème rencontré par les micro-supercondensateurs actuels. Les liquides ioniques étudiés ont été conçus sur la base de leurs structures et leurs propriétés physico-chimiques. Des caractérisations électrochimiques ont été réalisées avec des micro-supercondensateurs à base d’oxyde de ruthénium et d’oxyde de manganèse. De très bonnes performances ont été obtenus en utilisant des collecteurs de courant poreux à grande surface spécifique. Les électrolytes liquides constituant cependant un verrou technologique à la réalisation de micro-supercondensateurs fonctionnels compatible avec les procédés de microfabrication, des ionogels composés d’une matrice solide dans laquelle a été confinée le liquide ionique ont également été réalisés. / The rising growth of smart and autonomous microelectronic devices in the IoT (Internet of Things) era urges the development of advanced microscale energy sources with tailor-made features and customized energy/power requirements. Micro-supercapacitors (MSCs) emerged as potential energy storage devices complementing micro-batteries to power ubiquitous sensor networks needed to foster the development of IoT. However, the low cell voltage and low energy density remain major bottleneck that prevents their application at a large scale in real devices. To mitigate this issue, several studies have been devoted to the engineering of MSC electrode materials and structural architecting of current collectors to enhance the surface area and areal energy density by considering the limited available footprint area. This, however, has associated challenges such as a complex synthesis route, poor interfacial and mechanical stability of the electrode, and electrolyte compatibility issues, among others. Another key challenge to solve for reaching high energy density values in MSCs is the limited electrochemical stability window (ESW) of the electrolytes used as energy stored is directly related to the square of the cell voltage. The electrolytes play a major role in deciding the ESW and liquid-state electrolytes commonly used are troublesome for the microfabrication process due to leakage, evaporation, and safety issues. Therefore, it’s imperative to develop alternative electrolytes including solid-state electrolytes reconcilable to the target application of MSCs. This thesis aims at developing novel ionic-liquid (IL)-based electrolytes (both protic and aprotic) suitable for pseudocapacitive metal oxide (e.g., RuO2, MnO2)-based micro-supercapacitors (MSCs). IL-based electrolytes exhibit key properties including low vapor pressure, high temperature stability, low melting point, etc. with a wide ESW and help improve energy density performance, overcoming the major bottleneck faced by current MSCs. During this project, ILs are rationally designed based on their physicochemical properties. The detailed structure-property and electrochemical characterization studies were done using RuO2 and MnO2-based MSCs. We demonstrate state-of-the-art performance by developing high surface area porous current collectors with enhanced mass loading and solid-state devices using ionogel electrolytes, enabling their feasible integration with microelectronics to power connected IoT sensor networks.

Page generated in 0.0429 seconds