• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acompanhamento da bioatividade do solo puro e tratado durante o processo de biodegrada??o das blendas de polietileno/amido termopl?stico/quitosana (PEBD/TPS/Q) e amido termopl?stico/quitosana (TPS/Q) / Monitoring of bioactivity of pure and treated soil during the biodegradation process of polyethylene/starch blends thermoplastic/chitosan (PEBD/TPS/Q) and thermoplastic starch /chitosan (TPS/Q)

GOMES, Vinicius Olivieri Rodrigues 22 July 2015 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-06-21T17:20:01Z No. of bitstreams: 1 2015 - Vinicius Olivieri Rodrigues Gomes.pdf: 8391173 bytes, checksum: b3790798dbf591af7fcc8e63ad01c306 (MD5) / Made available in DSpace on 2017-06-21T17:20:01Z (GMT). No. of bitstreams: 1 2015 - Vinicius Olivieri Rodrigues Gomes.pdf: 8391173 bytes, checksum: b3790798dbf591af7fcc8e63ad01c306 (MD5) Previous issue date: 2015-07-22 / The need of producing polymeric artifacts increasingly powerful and versatile but which have increasingly lower biodegradation times motivates the scientific community to seek combinations of natural and synthetic polymers in order to meet both aspects. The manufacture of the blend LDPE/TPS Starch / Chitosan aims to go against that objective. The biodegradation occurs mostly in the soil. Trying to understand the dynamics of the biodegradation process in soil, this paper monitored the effects caused by deposition of the blend, analyzing different parameters, such as organic carbon, organic matter and microbial carbon, indicating levels of soil quality.The blends were prepared with different concentrations of chitosan, with values set to 0, 7, 5 and 15% of total mass and buried in pure soil and soil treated with humus. The analysis periods were 10, 40, 70, 100 and 130 days, with samples being exposed to the environment. Infrared analysis were performed using Fourier transform, X-ray diffraction, scanning electron microscopy with spectroscopy dispersive energy before and after biodegradation mass loss, after the biodegradation process of the blends. Organic carbon, organic matter, microbial carbon, pH and moisture in the soil.The results obtained after analysis in blend showed that with the passage of time, the biodegradation process happened, considering that carbon levels dropped considerably and oxygen were increased in accordance with the EDS analysis. The FTIR analysis confirmed this fact by showing that there was an intese oxidative process, especially in the initial 70 days in all samples. The X-RD analysis showed that there was a variationin crystallinity, but always with a decrease of this paramenter. The weight loss was also significant and progressive in all samples. Soil results showed that the same is resilient and can recover its characteristics during the biodegradation process. At the beginning of the experiment, especially in the first 40 ays, all evaluated paramenters declined considerably, but returned to baseline levels and maintained these values by the end of the experiment. Experimental design was made and it showed that none of the dependent variables influenced the biodegradion process. / A necessidade de produzir artefatos polim?ricos cada vez mais vers?teis e ?performantes? e que apresentem caracter?sticas de biodegrada??o cada vez mais acentuadas tem motivado a comunidade cient?fica a buscar combina??es entre pol?meros sint?ticos e naturais com o objetivo de atender esses aspectos. O desenvolvimento de blendas de polietileno de baixa densidade/amido termopl?stico/quitosana (PEBD/TPS/Q) e de amido termopl?stico/quitosana (TPS/Q) visou ir de encontro a tal objetivo, procurando entender a din?mica do processo biodegradativo no solo. O presente trabalho acompanhou os efeitos causados pela deposi??o dessas blendas, analisando diferentes par?metros, como carbono org?nico total, massa org?nica total e carbono de biomassa microbiana, que indicam n?veis de qualidade do solo, al?m da perda de massa ap?s cada per?odo de biodegrada??o. As blendas de PEBD/TPS/Q e TPS/Q foram preparadas com diferentes concentra??es de quitosana, com valores definidos em 0, 7,5 e 15% da massa total e enterradas em solo puro e solo tratado com h?mus. Os per?odos de an?lise de biodegrada??o foram de 10, 40, 70, 100 e 130 dias, com as amostras sendo expostas ao ambiente. As blendas foram analisadas por espectroscopia de infravermelho com transformada de Fourier (FTIR), difra??o de raios-X (DRX), microscopia eletr?nica de varredura com espectroscopia de energia dispersiva (MEV/EDS), e quanto a perda de massa, antes e ap?s o processo de biodegrada??o. Tamb?m foram realizadas an?lises de carbono org?nico total, massa org?nica total, concentra??o de carbono de biomassa microbiana, pH e umidade dos solos utilizados. Os resultados comprovaram o processo biodegradativo das blendas com o passar do tempo, tendo em vista a diminui??o dos n?veis de carbono e aumento consider?vel dos n?veis de oxig?nio das blendas de PEBD/TPS/Q, de acordo com as an?lises de FTIR e EDS, e total biodegrada??o das blendas de TPS/Q. As bandas de FTIR comprovaram a ocorr?ncia do processo oxidativo, principalmente nos 70 dias iniciais, nas amostras de PEBD/TPS/Q. As an?lises de DRX mostraram que houve uma varia??o da cristalinidade, com a tend?ncia de diminui??o deste par?metro. A perda de massa tamb?m foi consider?vel e progressiva para todas as amostras. Os resultados de an?lise das amostras de solo mostraram o poder de recupera??o da atividade microbiana dos mesmos (resili?ncia) durante o processo biodegradativo. No per?odo inicial do experimento, em especial nos primeiros 40 dias, todos os par?metros avaliados sofreram decaimento de seus valores, por?m retornaram aos patamares iniciais e mantiveram esses valores at? o final do experimento. O planejamento experimental realizado mostrou que nenhuma das vari?veis independentes influenciou no processo de bioatividade do solo.
2

The effects of condensed tannins, nitrogen and climate on decay, nitrogen mineralisation and microbial communities in forest tree leaf litter

Shay, Philip-Edouard 03 January 2017 (has links)
Vast amounts of carbon are stored forest soils, a product of decaying organic matter. Increased CO2 in the atmosphere is predicted to lead to increasing global temperatures, and more extreme moisture regimes. Such increases in mean temperature could accelerate the rate of organic matter decay in soils and lead to additional release of CO2 into the atmosphere, thus exacerbating climate change. However, due to its impact on plant metabolism, high atmospheric CO2 concentrations may also lead to greater condensed tannins (CT) and reduced nitrogen (N) content in leaf litter. This reduction in litter quality has the potential to slow decay of organic matter in soil and therefore offset the accelerated decay resulting from a warmer climate. My research aimed to quantify the effects of climate and litter chemistry, specifically CT and N, on litter decay, N mineralization and associated microbes in the field. Strings of litterbags were laid on the forest floor along climate transects of mature Douglas-fir stands of coastal British Columbia rain-shadow forests. In-situ climate was monitored alongside carbon and nitrogen loss over 3.58 years of decay along three transects located at different latitudes, each transect spanning the coastal Western Hemlock and Douglas-fir biogeoclimatic zones. Microbial communities in the decaying litter and in forest soils were also analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Microbial biogeography at field sites was partially influenced by climate, soil characteristics and spatial distance, but did not improve best fit decay models using climate and litter chemistry variables. Litter with greater initial CT and smaller N concentration slowed down early decay (0 - 0.58 yr) and net N mineralization. Warmer temperatures accelerated later decay (0.58 - 3.58 yr) and net N mineralization. Water-soluble CT were rapidly lost during decay, while other forms of CT were likely responsible for slower decay. The composition of fungal communities on decaying litter was affected by initial concentrations of CT and N. On a yearly basis, the slower decay of litter with high CT and reduced N content can offset accelerated rates of decay associated with warmer temperatures. Concurrent shifts in microbial communities and net N mineralization suggest potential benefits to trees. / Graduate / 2017-12-19
3

Effect of Phosphorus Fertiliser on Soil Organic Matter Composition of Hill Country Pasture

Binoka, Danfung Teresa January 2008 (has links)
Soil organic matter is important as storage for carbon and nutrients, supporting soil structure, and as a filter for pollutants entering the soil ecosystem. The recovery of soil organic matter in depleted soils can take decades, or even hundreds of years. It has been assumed that in non-eroding pasture, soil carbon levels either increase or not change over time. However, some recent studies have suggested that fertiliser addition to pasture soils may contribute to decreases in soil carbon content. My hypotheses were: 1. As P fertiliser loadings increase the soil carbon content and C:N ratio will decrease. 2. Changes in C pools will be greater in the more active pool (readily available carbon, and microbial biomass carbon) within the soil total carbon The study was undertaken at a long term fertiliser trial, established in 1980, at the Whatawhata Hill Country Research Station west of Hamilton, New Zealand. The fertiliser trial has P fertiliser application rates maintained since 1984. Olsen P, total C, total N, labile carbon, respirable carbon, specific respiration rate, microbial biomass C, microbial quotient, mineralised N, microbial biomass N, microbial N quotient, and mineralised N per microbial biomass nitrogen, C:N ratio, and soil pH were measured on soil samples collected from 12 paddocks with six P fertiliser loading (0, 10, 20, 30, 50, 100 kg P ha-1 yr-1). As expected, the available P (Olsen P) increased significantly (P less than 0.001) with increasing P fertiliser application rate. Total carbon, labile carbon, and total nitrogen all decreased significantly (P less than 0.05) with increasing P fertiliser application. No significant relationships were found between P fertiliser and respirable carbon, microbial carbon, microbial (C) quotient, microbial specific respiration, microbial nitrogen, microbial (N) quotient, mineralised N, or C:N ratio. The first hypothesis was rejected as the C:N ratio did not change with increased P fertiliser application. However, both C and N decreased with increased P fertiliser application. The second hypothesis was, therefore, accepted in part because there was a decrease in labile carbon (readily available carbon) and total carbon, with P fertiliser application, but no relationship was evident for the respirable carbon and microbial biomass.
4

Ciclagem de carbono em área sob semeadura direta e aplicação de lodo de esgoto / Carbon cycling in an area under no-till and long-term sewage sludge application

Freiberger, Mariângela Brito [UNESP] 22 February 2016 (has links)
Submitted by MARIÂNGELA BRITO FREIBERGER null (maia_bf@yahoo.com.br) on 2016-04-01T13:08:09Z No. of bitstreams: 1 TESE-MARIÂNGELA BRITO FREIBERGER.pdf: 1663017 bytes, checksum: 79b257695de46e620dc8065c2ad772ce (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-05T14:11:18Z (GMT) No. of bitstreams: 1 freiberger_mb_dr_bot.pdf: 1663017 bytes, checksum: 79b257695de46e620dc8065c2ad772ce (MD5) / Made available in DSpace on 2016-04-05T14:11:18Z (GMT). No. of bitstreams: 1 freiberger_mb_dr_bot.pdf: 1663017 bytes, checksum: 79b257695de46e620dc8065c2ad772ce (MD5) Previous issue date: 2016-02-22 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O estudo teve por principal objetivo avaliar o estoque de carbono (C), as alterações na quantidade de C microbiano, a qualidade da matéria orgânica (MO) e a emissão de CO2 em decorrência de aplicações de lodos de esgoto em área sob semeadura direta. A área experimental, que apresenta Latossolo Vermelho de textura argilosa e está localizada em Botucatu, SP, tem sido conduzida com os mesmos tratamentos desde 2002. Os resultados constantes no presente estudo, entretanto, foram obtidos no período de outubro de 2012 a outubro de 2014. O delineamento experimental utilizado foi o de blocos ao acaso em esquema fatorial 2 x 4, com quatro repetições. Os tratamentos correspondem à aplicação bienal de dois resíduos (lodo biodigerido – LB e lodo centrifugado – LC) em quatro doses: 0, 2, 4 e 8 Mg ha-1 (base seca) e o sistema de produção utilizado nesse período foi a sucessão soja / aveia-preta. Em cada um dos cultivos avaliou-se características nutricionais e de produtividade das culturas e a emissão de CO2 a partir do solo. Ao final do estudo foram coletadas amostras de solo para análise química básica, fracionamento da MO, C microbiano e estoque de C. A aplicação continuada de LC promoveu aumento do pH do solo e do teor de macronutrientes, principalmente Ca, bem como maior produção de matéria seca e acúmulo de nutrientes na parte aérea da aveia-preta. O LC também promoveu maior acúmulo de C nas plantas e maior atividade dos microrganismos do solo, o que acarretou em maior teor de C da biomassa microbiana (até 390 mg kg-1 na camada superficial), maior decomposição de MO leve e, consequente maior fluxo de CO2 para atmosfera (de 4,8 a 6,2 µmol m-2 s-1). Aplicações de longa data de lodo de esgoto (LB ou LC) resultam no aumento do teor de micronutrientes no solo, a ponto de Cu, Fe, Mn e Zn se apresentarem em níveis que podem ser prejudiciais às plantas. A produtividade da soja foi maior (até 3.232 kg ha-1) quando do uso de doses de lodos equivalentes a 4,5 a 5,3 Mg ha-1. A aplicação de lodos de esgoto resulta em aumento dos teores de C orgânico total (até 19,8 g kg-1), C da fração particulada (até 0,88 g kg-1) e C associado a minerais (até 19,0 g kg-1) somente na camada superficial do solo. Dentre as substâncias húmicas, a fração humina foi a que mais contribuiu com o estoque de C no solo (até 13,8 g kg-1). Após seis aplicações de lodo de esgoto, independentemente da dose e tipo de lodo, o estoque de C no solo aumentou apenas na camada superficial, e correspondeu a 106,2 Mg ha-1. / The study had as main objective to evaluate carbon (C) stock, changes in the amount of microbial C, quality of the soil organic matter (SOM) and CO2 emission as affected by sewage sludge applications in area under no-till. The experimental area, which shows a clayey Rhodic Ferralsol and is located in Botucatu, SP, has been conducted with the same treatments since 2002. The results of the present study, however, were obtained in the period from October 2012 to October 2014. A complete randomized blocks design arranged in a 2x4 factorial scheme and with four replicates was used. The treatments are represented by biennial application of two sewage sludge types (biodigested sludge - BS and centrifuged sludge - CS) in four rates: 0, 2, 4 and 8 Mg ha-1 (dry basis). The cropping system used in the study was a soybean/black oat succession. Yield and nutritional aspects of crops and CO2 emissions from soil were evaluated in each one of the cultivations. At the end of the study, soil samples were collected for analysis of soil fertility, OM fractionation, microbial C and C stock. The continued application of CS increased the pH and macronutrient levels in the soil, mainly Ca, as well as increased dry matter production and nutrient accumulation in aerial part of black oat. CS application also promoted greater accumulation of C in plants and greater activity of soil microorganisms, which led to a greater level of microbial biomass C (up to 390 mg kg-1 in the superficial layer), greater decomposition of light OM and consequently greater CO2 fluxes to the atmosphere (from 4.8 to 6.2 µmol m-2 s-1). Long time applications of sewage sludge (either BS or CS) resulted in increase of micronutrients levels in the soil, up to the point of Cu, Fe, Mn and Zn reach levels that may be harmful to plants. The soybean yield was higher (up to 3,232 kg ha-1) when sludge rates equivalent to 4.5 to 5.3 Mg ha-1 were used. The long-term application of sewage sludge increases the levels of total organic C (up 19.8 g kg-1), particulate fraction of C (up to 0.88 g kg-1) and C associated with minerals (up 19.0 g kg-1) only in the superficial layers of soil. Among the humic substances, the fraction that most contributed to the soil organic C (up 13.8 g kg-1) was humin. After six sewage sludge applications, regardless of the rate and type of sludge, the soil C stock increased only in the surface layer, and in total corresponded to 106.2 Mg ha-1. / FAPESP: 2011/21276-9 / CNPq: 152725/2012-1
5

Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of Southern Ecuador: influence of altitude

Iost, Susanne 07 December 2007 (has links)
Impacts of land use and climate change in tropical forests on the global carbon budget are of principal interest in the recent research, as these forests amount to about 48 % of the world’s forested area. Interest has been focused on lowland tropical forests mainly, but tropical montane forests occupy about 20 % of all tropical forests. Soils of tropical montane forests are frequently waterlogged and characterised by high soil organic carbon stocks. Furthermore, along altitudinal gradients, changes in stand structure and net primary production can be observed that have not been fully explained yet. As causes reduced microbial activity and nitrogen turnover in soils of tropical montane forests have been suggested. Against the background of climate change, carbon turnover mechanisms in soils of these forests are of special interest. The present study therefore aimed at determining and quantifying relevant carbon and nitrogen pools as well as nitrogen mineralisation potentials. Furthermore, size, activity, and structure of microbial biomass were characterised. The collected data was supposed to provide basic knowledge on carbon and nitrogen cycling in tropical montane forest soils. Thus, evaluation of the susceptibility of their carbon stocks for climate change as well as nitrogen and carbon limitation of microbial organic matter decomposition was possible. Field work of this study was conducted during 2003–2005 at an altitudinal transect that in- cluded five study sites between 1 050 and 3 060 m amsl. Total soil respiration was recorded biweekly over two years, the contribution of roots to total soil CO2 efflux over one year. Soils of the study sites were sampled twice and biochemical and microbial parameters were determined.
6

Origine, composition et destinée de la matière organique dissoute et ses interactions avec les communautés de procaryotes dans la mer du Labrador

LaBrie, Richard 12 1900 (has links)
Dans les océans, les procaryotes sont des acteurs clés dans le cycle du carbone puisqu’ils consomment une fraction importante de la matière organique dissoute (MOD) relâchée par les producteurs primaires. Puisque cette matière organique est très complexe et de biodisponibilité variable, les communautés de procaryotes qui la consomme sont très diversifiées et spécialisées pour certains types de composés organiques. En utilisant cette matière organique, les procaryotes contribuent à réintroduire ce carbone dans le réseau trophique, une source d’énergie essentielle dans les gyres oligotrophes de l’océan. Toutefois, puisque cette consommation n’est pas parfaite, une quantité importante de carbone est relâchée sous forme de CO2 lors de la respiration, mais aussi sous forme de MOD récalcitrante, contribuant à séquestrer du carbone dans les océans. Le but de cette thèse est d’une part, de dresser un portrait global de la biodisponibilité de la MOD et d’autre part, de déterminer l’influence de la biodisponibilité de cette dernière sur la composition et le métabolisme des procaryotes dans la mer du Labrador, une mer dont le rôle est critique dans la régulation du climat. Plus spécifiquement, nous identifions pour la première fois comment la distribution spatiale des procaryotes influencent leur métabolisme et est influencée par leur préférence alimentaire dans les eaux de surface de la mer du Labrador. Finalement, nous regardons comment la matière organique produite en surface est transformée et séquestrée en profondeur suite à la convection hivernale dans la mer du Labrador. Le budget de carbone dans les océans n’est toujours pas balancé. Afin de mieux connaître les sources et la biodisponibilité du carbone dans les différents milieux aquatiques, nous avons évalué la biodisponibilité de la MOD à travers le continuum aquatique, des lacs jusqu’à l’océan. En menant une méta-analyse sur le sujet, nos résultats montrent que la proportion de matière organique labile, c’est-à-dire facilement utilisable par les procaryotes, est d’environ 6% dans tous les environnements aquatiques. Toutefois, la proportion de matière organique semi-labile, celle qui nécessite plus de transformation par les procaryotes, est grandement liée à la proximité au milieu terrestre. Les seuls écosystèmes aquatiques déviant de ces deux constats sont ceux en période d’efflorescence algale: ils contiennent beaucoup plus de carbone labile et semi-labile que ceux à l’équilibre. Nous avons estimé que le carbone semi-labile peut soutenir 62% de la biomasse de procaryotes dans les lacs et les milieux côtiers. Dans un deuxième temps, nous évaluons l’influence de la MOD sur le métabolisme et les communautés de procaryotes. Nous avons fait trois missions océanographiques sur la mer du Labrador à bord du navire Hudson pour déterminer la composition de la MOD et la communauté des procaryotes ainsi que leur métabolisme. En utilisant une approche novatrice, la modélisation de la distribution spatiale de l’abondance des procaryotes, nous avons montré à quel point celle-ci est importante pour déterminer leur préférence alimentaire ainsi que leur métabolisme. Nous avons également proposé un nouveau cadre conceptuel qui vise à faciliter la recherche à l’interface de la biogéochimie, de l’écologie microbienne et du métabolisme microbien. Dans un dernier temps, nous avons comparé la capacité des procaryotes venant de différentes profondeurs océaniques à séquestrer le carbone. Lors de la consommation de la MOD, les procaryotes en relâche une petite fraction sous forme plus récalcitrante. En répétant ce processus, le carbone résiduel devient très récalcitrant et peut résister à la consommation par les procaryotes durant des centaines d’années. Nous avons montré que les procaryotes de l’océan profond sont plus efficaces pour séquestrer le carbone de cette façon. Nos résultats montrent que ce sont les taxons rares des procaryotes qui sont les éléments clés dans cette suite de transformation qui mène à la séquestration du carbone appelée pompe microbienne. Cette thèse contribue à la compréhension du cycle du carbone dans la mer du Labrador et dans les écosystèmes aquatiques en général. Nous avons proposé une approche novatrice permettant de lier la qualité de la MOD à la composition des communautés de procaryotes qui la dégrade, un défi qui perdure depuis des dizaines d’années. De plus, nous montrons pour la première fois la que la pompe microbienne de carbone est un processus itératif fortement relié à la succession de la communauté de procaryotes. Nous montrons également que la pompe microbienne est active dans chaque strate océanique, mais que les procaryotes rares issus de l’océan profond sont plus efficaces à séquestrer le carbone. Mieux comprendre comment la composition de la MOD influence les procaryotes est primordial puisqu’ils sont centraux au cycle du carbone océanique. / Oceanic prokaryotes are key players in the carbon cycle by consuming dissolved organic mat-ter (DOM) produced by primary producers. As this organic matter is highly complex with varying degree of bioavailability, prokaryotic communities are highly diverse and different taxa target certain types of organic compounds. By consuming this organic matter, prokary-otes reintroduce this carbon into the food web, a critical energy flow in oligotrophic gyres. However, this consumption is not perfect and they release a lot of carbon as CO2 through respiration, but also as recalcitrant DOM. Thus, they contribute to carbon sequestration in aquatic ecosystems. The objective of this thesis is to characterize DOM bioavailability and its influence on the composition and metabolism of prokaryotic communities in the Labrador Sea, described as one of the Earth’s climate system tipping elements. More precisely, we quantify for the first time how the spatial abundance distribution of prokaryotes influences ecosystem metabolism and organic matter association in the surface waters of the Labrador Sea. Lastly, we look at how DOM produced at the surface is transformed and sequestered following the Labrador Sea winter convective mixing. The oceanic carbon budget is still unbalanced. In order to better understand its carbon sources and bioavailability, we characterize DOM bioavailability across the aquatic contin-uum, from lakes to the open ocean. Using a meta-analysis, our results show that the propor-tion of labile organic matter, i.e. readily available for prokaryotes, is similar at around 6% in all aquatic ecosystems. However, the proportion of semi-labile organic matter, i.e requiring transformations to be consumed by prokaryotes, is highly related to terrestrial connectivity. The only ecosystems that did not follow these patterns were in a phytoplankton bloom pe-riod and had a high proportion of labile and semi-labile organic matter as their counterparts at equilibrium. Finally, we estimated that semi-labile organic matter could sustain 62% of prokaryotic biomass in lakes and coastal zones. Second, we evaluated the influence of DOM on prokaryotic metabolism and community composition. In order to determine organic matter composition, prokaryotic community composition and metabolic rates, we did three oceanic cruises in the Labrador Sea onboard the Hudson ship. By using spatial abundance distribution modelling of prokaryotes, we identified strong associations between groups of this novel approach and organic matter composition. We also proposed a framework to bridge the gap between prokaryotic diversity, microbial ecology, and biogeochemistry among methods and across scales. Lastly, we compared how prokaryotic communities from different oceanic strata could se-quester carbon. When they consume organic matter, prokaryotes release a small amount in recalcitrant forms. Through this iterative process, called the microbial carbon pump, prokaryotes contribute to carbon sequestration by creating highly recalcitrant compounds that resist further degradation for hundreds of years. We have shown that all prokaryotes enable the microbial carbon pump, but that prokaryotes from deeper strata are more effi-cient. Our results also conclusively show that the rare prokaryotic taxa are key players in the microbial carbon pump. This thesis contributes to better understand the carbon cycle in the Labrador Sea and in all aquatic ecosystems. We proposed a novel framework to relate biogeochemistry, prokaryotic diversity and microbial ecology which has been a challenge for decades. Moreover, we con-clusively showed for the first time that the iterative process of the microbial carbon pump is related to prokaryotic succession. We also show that it happens in all oceanic strata, but that rare prokaryotes from the deep ocean are more efficient to sequester carbon. Better understanding how DOM composition influences prokaryotes is of prime importance as they are the main drivers of the oceanic carbon cycle.

Page generated in 0.0517 seconds