• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 15
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Αυτόματη ανίχνευση ύποπτων μικροαποτιτανώσεων σε υψηλής ανάλυσης, τρισδιάστατη απεικόνιση μαστού / Automatic detection of suspicious microcalcifications in high resolution 3-D breast imaging

Παπαβασιλείου, Ευγενία 07 1900 (has links)
This Master Thesis presents a novel classification approach for microcalcifications (MCs) extracted from core biopsy tissue samples digitized using micro-CT, a high-resolution 3D imaging modality. MCs are tiny spots of calcium that may occur in the female breast. Although they are common in healthy woman, they are often an early sign of breast cancer. The shape of the MCs is an important factor used to discriminate between benign and malignant abnormalities. However, the current standard imaging modalities (i.e. mammography) are not efficient for a clear shape based analysis. In case of suspiciousness, a biopsy is conducted and the extracted tissue is anatomopathologically investigated for the presence of cancer cells. Nevertheless, only 20-35% of biopsies turn out to be positive. As such, the question whether some unnecessary biopsies can be avoided if the shape of the MCs could be analysed in more detail has been raised. In addition, the MCs themselves are not analysed, but they are characterised as benign (or malignant) according to whether they were found into a benign (or malignant) tissue. As a result, there is a ground truth for the tissue samples but not for the individual MCs. So, when a classifier of a Computer Aided Diagnosis System will be asked to classify a MC according to its shape, there will be a degree of ambiguity and uncertainty. This master thesis investigates whether the use of a clustering method as a preprocessing step before training the classifier could avoid the ground truth issues and could improve the obtained classification results. / Η παρούσα μεταπτυχιακή εργασία παρουσιάζει μια νέα μέθοδο για την ταξινόμηση μικροαποτιτανώσεων μαστού που έχουν εξαχθεί από βιοψίες και έχουν ψηφιοποιηθεί με χρήση micro-CT, μια υψηλής ανάλυσης, τρισδιάστατη τεχνική απεικόνισης. Οι μικροαποτιτανώσεις (ή αλλιώς μικροασβεστώσεις) αποτελούν μικρά αποθέματα ασβεστίου στον μαστικό αδένα. Παρόλο που μπορεί να εμφανιστούν και σε υγιείς γυναίκες, μπορούν να αποτελέσουν ένα πρώιμο σημάδι καρκίνου του στήθους. Το σχήμα είναι ένας από τους σημαντικότερους παράγοντες ο οποίος βοηθάει στη διάκριση ανάμεσα σε καλοήθεις και κακοήθεις μικροασβεστώσεις, ωστόσο δεν μπορεί να απεικονιστεί επαρκώς μέσω των στανταρ απεικονιστικών τεχνικών (μαστογραφία). Σε περίπτωση υποψίας κακοήθειας, διεξάγεται βιοψία με σκοπό την απομάκρυνση ιστού από την ύποπτη περιοχή και την ανατομοπαθολογική του εξέταση για την παρουσία καρκινικών κυττάρων. Ωστόσο, μονο το 20%-35% των βιοψιών αποδεικνύονται κακοήθεις. Ως εκ τούτου, έχει τεθεί το ερώτημα κατά πόσο μπορούν να αποφευχθούν οι μη απαραίτητες βιοψίες εάν το σχήμα των μικροασβεστώσεων μπορούσε να μελετηθεί πιο λεπτομερώς. Επιπροσθέτως, οι μικροασβεστώσεις αυτές καθ’ εαυτές δεν αναλύονται αλλά χαρακτηρίζονται ως καλοήθεις (ή κακοήθεις) με βάση το αν βρέθηκαν μεσα σε καλοήθες (ή κακοήθες) ιστό. Ως αποτέλεσμα, υπάρχει βάση αναφοράς για τα δείγματα ιστού αλλά όχι για τις μικροασβεστώσεις. Έτσι, όταν ζητηθεί από έναν ταξινομητή ενός συστήματος υποβοηθούμενης διάγνωσης με υπολογιστή να ταξινομήσει μικροασβεστώσεις με βάση το σχήμα τους υπάρχει ένα μεγάλο ποσοστό ασάφειας και αβεβαιότητας. Αυτή η μεταπτυχιακή εργασία έχει σκοπό να ερευνήσει εάν η εισαγωγή ενός βήματος συσταδοποίησης πριν αυτού της ταξινόμησης μπορεί να αποφύγει το πρόβλημα έλλειψης βάσης αναφοράς και να βελτιώσει τα αποτελέσματα της ταξινόμησης.
12

Desenvolvimento de novas técnicas para redução de falso-positivo e definição automática de parâmetros em esquemas de diagnóstico auxiliado por computador em mamografia / Development of news technique for reduction of false-positive and automatic definition of parameters of mammograms for CAD schemes

Ana Cláudia Martinez 28 September 2007 (has links)
O presente trabalho consiste na investigação das características da imagem mamográfica digitalizada para definir automaticamente parâmetros de processamento em um esquema de diagnóstico auxiliado por computador (CAD) para mamografia, com o objetivo de se obter o melhor desempenho possível. Além disso, com base na aplicação dos resultados dessa primeira investigação, propõe-se também uma técnica de redução dos índices de falso-positivo em esquemas CAD visando à redução do número de biópsias desnecessárias. Para a definição automática dos parâmetros de processamento nas técnicas de detecção de microcalcificações e nódulos, foram extraídas algumas características das imagens, como desvio padrão, terceiro momento e o limiar de binarização. Utilizando o método de automatização proposto, observou-se um aumento de 20% no desempenho do esquema CAD (Az da curva ROC) em relação ao método não automatizado com parâmetro fixo. Para que fosse possível o processamento da imagem mamográfica inteira pelo esquema CAD e as técnicas desenvolvidas, foi desenvolvida também uma técnica para seleção automática de regiões de interesses, que recorta partes relevantes da mama para a segmentação. O índice de falsos positivos foi tratado por técnica específica desenvolvida com base na comparação das duas incidências típicas do exame mamográfico que, juntamente com a avaliação automática da imagem no pré-processamento para detecção de microcalcificações produziu uma redução significativa de 86% daquela taxa em relação ao procedimento de parâmetro fixo. / This present work consists on the investigation of mammographic image characteristics for automatic determination of image processing parameters for a mammography computer aided diagnosis scheme (CAD) in order to get optimal performance. Additionally, using the results obtained on this first investigation, it was also developed a new technique for the reduction of false-positive rates on CAD projects, which can result on the reduction of the number of unnecessary biopsies. For the automatic definition of the image processing parameters for the techniques of detection of microcalcifications and nodules, some image characteristics had been extracted, as standard deviation, third momentum and the thresholding value. Using the proposed automatization method it was reported an increase of 20% in the CAD performance (evaluated determining the ROC curve) in comparison to the non-automatic method (fixed parameter). Besides, for CAD schemes it is necessary to process the entire mammographic image. Thus, it was also developed a technique for automatic selection of regions of interests in the mammogram, which extracts better regions from breast image for further segmentation. False-positives rates was treated by a specific technique based on the comparison of the two typical incidences of mammographic examination that together with the automatic parameter determination method for microcalcification detection produced a significant reduction of 86% of that rate in relation to the procedure that uses fixed parameter.
13

Feature detection in mammographic image analysis

Linguraru, Marius George January 2004 (has links)
In modern society, cancer has become one of the most terrifying diseases because of its high and increasing death rate. The disease's deep impact demands extensive research to detect and eradicate it in all its forms. Breast cancer is one of the most common forms of cancer, and approximately one in nine women in the Western world will develop it over the course of their lives. Screening programmes have been shown to reduce the mortality rate, but they introduce an enormous amount of information that must be processed by radiologists on a daily basis. Computer Aided Diagnosis (CAD) systems aim to assist clinicians in their decision-making process, by acting as a second opinion and helping improve the detection and classification ratios by spotting very difficult and subtle cases. Although the field of cancer detection is rapidly developing and crosses over imaging modalities, X-ray mammography remains the principal tool to detect the first signs of breast cancer in population screening. The advantages and disadvantages of other imaging modalities for breast cancer detection are discussed along with the improvements and difficulties encountered in screening programmes. Remarkable achievements to date in breast CAD are equally presented. This thesis introduces original results for the detection of features from mammographic image analysis to improve the effectiveness of early cancer screening programmes. The detection of early signs of breast cancer is vital in managing such a fast developing disease with poor survival rates. Some of the earliest signs of cancer in the breast are the clusters of microcalcifications. The proposed method is based on image filtering comprising partial differential equations (PDE) for image enhancement. Subsequently, microcalcifications are segmented using characteristics of the human visual system, based on the superior qualities of the human eye to depict localised changes of intensity and appearance in an image. Parameters are set according to the image characteristics, which makes the method fully automated. The detection of breast masses in temporal mammographic pairs is also investigated as part of the development of a complete breast cancer detection tool. The design of this latter algorithm is based on the detection sequence used by radiologists in clinical routine. To support the classification of masses into benign or malignant, novel tumour features are introduced. Image normalisation is another key concept discussed in this thesis along with its benefits for cancer detection.
14

Analyse multifractale 2D et 3D à l'aide de la transformation en ondelettes : application en mammographie et en turbulence développée

kestener, pierre 21 November 2003 (has links) (PDF)
Depuis une dizaine d'années, la transformée en ondelettes a été reconnue comme un outil privilégié d'analyse des objets fractals, en permettant de définir un formalisme multifractal généralisé des mesures aux fonctions. Dans une première partie, nous utilisons la méthode MMTO (Maxima du Module de la Transformée en Ondelettes) 2D, outil d'analyse multifractale en traitement d'images pour étudier des mammographies. On démontre les potentialités de la méthode pour le problème de la segmentation de texture rugueuse et la caractérisation géométrique d'amas de microcalcifications, signes précoces d'apparition du cancer du sein. Dans une deuxième partie méthodologique, nous généralisons la méthode MMTO pour l'analyse multifractale de données 3D scalaires et vectorielles, en détaillant la mise en oeuvre numérique et un introduisant la transformée en ondelettes tensorielle. On démontre en particulier que l'utilisation d'une technique de filtres récursifs permet un gain de 25 a 60 \% en temps de calcul suivant l'ondelette analysatrice choisie par rapport à un filtrage par FFT. La méthode MMTO 3D est appliquée sur des simulations numériques directes (SND) des équations de Navier-Stokes en régime turbulent. On montre que les champs 3D de dissipation et d'enstrophie pour des nombres de Reynolds modérés sont bien modélisés par des processus multiplicatifs de cascades non-conservatifs comme en témoigne la mesure de l'exposant d'extinction $\kappa$ qui diffère significativement de zéro. On observe en outre que celui-ci diminue lorsqu'on augmente le nombre de Reynolds. Enfin, on présente les premiers résultats d'une analyse multifractale pleinement vectorielle des champs de vitesse et de vorticité des mêmes simulations numériques en montrant que la valeur du paramètre d'intermittence $C_2$, mesuré par la méthode MMTO 3D tensorielle, est significativement plus grande que celle obtenue en étudiant les incréments de vitesse longitudinaux 1D.
15

Texture analysis of mammographic images for computer-aided breast cancer diagnosis / Ανάλυση υφής μαστογραφικής εικόνας για διάγνωση καρκίνου του μαστού

Καραχάλιου, Άννα 02 February 2011 (has links)
The aim of the current thesis is the exploitation of texture analysis approaches for the computer-aided diagnosis (CADx) of breast cancer. The first objective of the presented thesis is the exploitation of texture properties of the tissue surrounding microcalcifications (MCs) on x-ray mammograms for its differentiation into malignant or benign type. This approach is differentiated from previously reported texture-based CADx schemes by analyzing the “net texture pattern” of the underlying breast tissue, removing any bias introduced by the presence of MCs. This is achieved by employing a “coarse” MC segmentation step, relaxing requirements for accurate segmentation in morphology-based CADx schemes, and subsequently “excluding” the segmented MCs from the tissue area being analyzed by means of texture analysis approaches. The discriminating ability of the MCs surrounding tissue texture analysis approach is compared to that of a current state-of-the-art texture analysis approach and to a morphology-based one, employing supervised classification schemes. Classification performance is evaluated by means of Receiver Operating Characteristic (ROC) analysis on a dataset of 108 pleomorphic MC clusters originating from the Digital Database for Screening Mammography (DDSM). Results suggested that the exploitation of texture properties of the tissue surrounding MCs on screening x-ray mammograms accounts for a competitive new methodological approach towards computer-aided diagnosis of breast cancer. The second objective of the current thesis is the exploitation of lesion enhancement kinetics heterogeneity for the differentiation of breast lesions in Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). This approach is differentiated from previously reported studies by investigating the texture of the lesion not as depicted on a single post-contrast frame but by considering serial post-contrast data. This is achieved by generating parametric maps the reflect lesion enhancement kinetics properties and then subjecting the parametric maps to texture analysis. The discriminating ability of the enhancement kinetics “texture” analysis approach is compared to that of current state-of-the-art approach of single time frame texture analysis, employing supervised classification schemes. Classification performance is evaluated by means of ROC analysis on a dataset of 81 mass-like lesions, originating from a locally available Database. Results suggested that texture features extracted from parametric maps that reflect lesion washout properties can discriminate malignant from benign lesions more efficiently as compared to texture features extracted from either the 1st post-contrast frame lesion area or from a parametric map that reflects lesion initial uptake. Results of the current thesis suggest the contribution of texture analysis methods in breast imaging for the quantification of both anatomical and functional tissue heterogeneity, providing important information for breast cancer diagnosis. / Στα πλαίσια της παρούσας Διατριβής μελετήθηκε η συμβολή μεθόδων ανάλυσης υφής μαστογραφικών εικόνων στη διάγνωση καρκίνου του μαστού. Η μελέτη εστιάσθηκε σε δύο διαγνωστικά προβλήματα τα οποία αποτελούν ανοικτά ζητήματα τόσο στην κλινική ρουτίνα όσο και στις μεθοδολογικές προσεγγίσεις αυτόματων συστημάτων ανάλυσης εικόνας για την υποβοήθηση της διάγνωσης με χρήση υπολογιστή (Computer-aided diagnosis - CADx). Το πρώτο διαγνωστικό πρόβλημα στο οποίο εστίασε η παρούσα Διατριβή αφορά στο χαρακτηρισμό μικροαποτατινώσεων στη μαστογραφία ακτίνων-Χ. Στην παρούσα μελέτη ακολουθείται μια διαφορετική προσέγγιση για τη διάγνωση συστάδων μικροαποτιτανώσεων, βάσει της οποίας μελετάται η ετερογένεια του ιστού ο οποίος περιβάλλει τις μικροαποτιτανώσεις. Ο «περιβάλλων ιστός» προκύπτει από εφαρμογή μεθόδου τμηματοποίησης των μικροαποτιτανώσεων και εξαίρεσής τους από την περιοχής ενδιαφέροντος. Οι απαιτήσεις ακρίβειας της μεθόδου τμηματοποίησης στην προσέγγιση ανάλυση υφής του «περιβάλλοντος ιστού» είναι μειωμένες, σε σχέση με τις αντίστοιχες μεθόδους των CADx συστημάτων βάσει μορφολογίας, καθώς απαιτείται μόνο «αδρός» καθορισμός των ορίων τους. Η ετερογένεια του περιβάλλοντος ιστού μελετήθηκε βάσει μεθόδων εξαγωγής χαρακτηριστικών υφής εικόνας, σε δείγμα 108 συστάδων μικροαποτιτανώσεων, που αντλήθηκαν από μαστογραφικές εικόνες της ψηφιακής βάσης αναφοράς Digital Database for Screening Mammography. Η διαχωριστική ικανότητα των εξαχθέντων χαρακτηριστικών υφής διερυνήθηκε με χρήση επιβλεπόμενων σχημάτων ταξινόμησης. Η ακρίβεια ταξινόμησης αξιολογήθηκε βάσει του εμβαδού της καμπύλης απόκρισης παρατηρητών. Η προσέγγιση «ανάλυσης υφής του περιβάλλοντος ιστού» συγκρίθηκε με την τρέχουσα μέθοδο ανάλυσης υφής εικόνας περιοχής ενδιαφέροντος που εμπεριέχει τη συστάδα μικροαποτιτανώσεων, αλλά και με προσέγγιση βάσει ανάλυσης μορφολογίας μικροαποτιτανώσεων. Τα αποτελέσματα της παρούσας μελέτης συνιστούν ότι η προσέγγιση ανάλυσης υφής «του περιβάλλοντος ιστού» αποτελεί μία νέα ανταγωνιστική μεθοδολογία στη διάγνωση καρκίνου του μαστού υποβοηθούμενη από υπολογιστή. Το δεύτερο διαγνωστικό πρόβλημα στο οποίο εστίασε η παρούσα Διατριβή αφορά στο χαρακτηρισμό χωροκατακτητικών αλλοιώσεων στη μαστογραφία μαγνητικής τομογραφίας με χρήση σκιαγραφικού (Dynamic Contrast-Enhanced Magnetic Resonance Imaging: DCE-MRI). Στην παρούσα μελέτη διερευνάται η ικανότητα ποσοτικοποίησης της ετερογένειας των αλλοιώσεων ως προς τη δυναμική τους συμπεριφορά για τη διάγνωση χωροκατακτητικών αλλοιώσεων στη DCE-MRI. Για το σκοπό αυτό δημιουργήθηκαν τρεις παραμετρικοί χάρτες βάσει υπολογισμού τριών δυναμικών χαρακτηριστικών των αλλοιώσεων σε επίπεδο εικονοστοιχείου, οι οποίοι αποτέλεσαν τη βάση για την εφαρμογή μεθόδου ανάλυσης υφής εικόνας, βάσει μητρών συνεμφάνισης στο πεδίο διαβαθμίσεων του γκρι. Μελετήθηκε η διαχωριστική ικανότητα μεμονωμένων χαρακτηριστικών υφής αλλά και επιλεχθέντων υποσυνόλων από κάθε παραμετρικό χάρτη με χρήση επιβλεπόμενων σχημάτων ταξινόμησης. Η ακρίβεια ταξινόμησης αξιολογήθηκε βάσει του εμβαδού της καμπύλης απόκρισης παρατηρητών. Η μέθοδος συγκρίθηκε με τη συμβατική προσέγγιση ποσοτικοποίησης ετερογένειας της αλλοίωσης σε συγκεκριμένο χρονικό στιγμιότυπο, όπως υιοθετείται από τρέχουσες προσεγγίσεις συστημάτων CADx στη DCE-MRI, σε δείγμα 81 αλλοιώσεων. Τα χαρακτηριστικά υφής που εξήχθησαν από χάρτες που εκφράζουν τη μεταβολή του σήματος κατά τη φάση της έκπλυσης του σκιαγραφικού παρουσίασαν την υψηλότερη ακρίβεια ταξινόμησης η οποία ήταν στατιστικώς σημαντικά διαφορετική συγκρινόμενη με χαρακτηριστικά που εξήχθησαν είτε από χάρτη που εκφράζει μεταβολή του σήματος κατά τη φάση της πρόσληψης του σκιαγραφικού ή από αλλοίωση όπως απεικονίζεται σε συγκεκριμένο χρονικό στιγμιότυπο. Τα αποτελέσματα της παρούσας Διατριβής υποδηλώνουν την ικανότητα μεθόδων ανάλυσης υφής στη μαστογραφική απεικόνιση για την ποσοτικοποίηση τόσο της ανατομικής όσο και της λειτουργικής ετερογένειας των αλλοιώσεων, παρέχοντας σημαντική πληροφορία για τη διάγνωση καρκίνου του μαστού.

Page generated in 0.0809 seconds