• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • Tagged with
  • 24
  • 17
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Le récepteur nucléaire de l'acide rétinoïque alpha (RARa) : nouveaux effets non-génomiques et nouveaux partenaires / Nuclear retinoic acid receptor alpha (RARα) : novel unconventional non-genomic effects and novel partners

Piskunov, Aleksandr 25 June 2012 (has links)
Les récepteurs nucléaires de l’acide rétinoïque (AR) appelés RAR, se comportent comme des facteurs de transcription inductibles par le ligand. La transcription des gènes cibles induite par l’AR, nécessite la fixation des RAR au niveau de séquences spécifiques des promoteurs et met en jeu des changements conformationnels des récepteurs qui contrôlent l’association/dissociation de toute une panoplie de corégulateurs. Cependant, en plus de ce modèle génomique et nucléaire bien établi, l’équipe du Dr Cécile Rochette-Egly a montré récemment que l’AR a aussi des effets non-génomiques et induit rapidement la voie de signalisation p38MAPK/MSK1 qui ensuite cible les RAR pour des cascades de phosphorylations et module la transcription des gènes cibles. Pendant mon travail de thèse, j’ai mis en exergue trois nouveaux concepts originaux du mécanisme d’action du sous-type RARα. J’ai montré qu’une sous-population de RARα est présente dans des microdomaines membranaires, les radeaux lipiques ou “lipid rafts”où elle interagit avec les protéines Gαq. Cette interaction est le signal des effets non génomiques de l’AR, l’activation de la voie de la p38MAPK. Ces effets ont été corrélés à l’activité des gènes cibles de l’AR, prouvant ainsi leur nécessité. J’ai identifié un nouveau partenaire de RARα, la profiline IIA. J’ai analysé le mécanisme moléculaire de l’interaction et démontré qu’elle a lieu dans le noyau. La profiline IIA s’est révélée être un régulateur des effects génomiques de RARα et est recrutée avec RARα au niveau des promoteurs des gènes cibles. Finalement j’ai mis en évidence une nouvelle fonction de RARα dans le contrôle de l’adhésion et de l’étalement des cellules. D’où l’hypothèse de nouveaux effets génomiques de RARα avec la profiline IIA dans le contrôle de l‘expression des protéines d’adhésion. Cependant, de manière inattendue, j ‘ai identifié une nouvelle population de RARα dans le cytoplasme de ces cellules. D’où l’hypothèse de nouveaux effets non génomiques dans le cytoplasme, via l’interaction de RARα avec des protéines d’adhésion. / Nuclear retinoic acid (RA) receptors (RARs) are ligand-dependent regulators of transcription. Their transcriptional activity relies mainly on their recruitment to specific DNA response elements and on their interactions with several coregulators at the ligand-binding domain. In addition to these classical genomic effects, the team of C. Rochette-Egly demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway with characteristic downstream consequences on thephosphorylation of RARs and the expression of their target genes. Here I highlighted three novel paradigms in the field of the RARα subtype. I found that a fraction of the cellular RARα pool is present in membrane lipid rafts, where it interacts with G protein alpha Q in response to RA. This interaction is the signal for nongenomic effects, i.e. the activation of p38MAPK and of the downstream kinase MSK1. These effects have been correlated to the activation of RA-target genes, highlighting its physiological relevance. I identified a new binding partner of RARα, profilin IIA. I deciphered the mechanism of the interaction and found that it occurs in nuclei. Remarkably, profilin IIA modulates positively the genomic effects of RARα and is recruited with RARα to target genes promoters. Finally, in an attempt to decipher the relevance of the RARα interaction with profilin IIA, I found that RARα controls cell adhesion and spreading. This might suggest a novel genomic functionof RARα and profiling in the control of the expression of genes involved in adhesion. However, preliminary experiments indicate that a pool of RARα is present in the cytosol, suggesting also novel nongenomic effects. Whether RARα controls adhesion via its interaction in the cytosol proteins involved in adhesion will require further investigations.
22

From eye lens cells to lens membrane proteins : Development and application of a hybrid high-speed atomic force microscopy/optical microscopy setup / From eye lens cells to lens membrane proteins : Development and application of a hybrid high-speed atomic force microscopy/optical microscopy setup

Colom diego, Adai 11 July 2013 (has links)
Je utilise le AFM et le HS-AFM pour étudier les caractéristiques mécaniques du cellule du cristallin et aussi des protéines de membrane de la cellule, AQP0 et Connexon. L’énergie d'interaction de la AQP0 est -2.7 kBT, très nécessaire pour former les microdomaines de jonctions (junctional microdomain). Aussi c' est la première fois qu il est possible de voir des protéines individuel et son mouvement en cellules vivants. La formation de microdomaines est important pour la transparence du cristallin, et le AQP1 ne le peux faire. / I used the AFM and HS-AFM for characterise the eye lens and the eye lens membrane protein, AQP0 and connexon.A QP0-AQP0 interaction energy is -2.7kBT, it is important for the formation of junctional microdomains, which keep the distance between the cells lens and lens transparency. this is the first report which is present time the visualization of unlabelled membrane proteins on living cells under physiological conditions. AQP1 can not maintain the lens transparency because it does not form junctional microdomains.
23

Réactivité des matériaux argileux dans un contexte de corrosion métallique. Application au stockage profond des déchets radioactifs en site argileux

Perronnet, Murielle 14 October 2004 (has links) (PDF)
Afin d'assurer le confinement de déchets radioactifs en milieu géologique profond, il est envisagé d'utiliser des matériaux argileux de site et des bentonites. Leur stabilité en présence de fer métal, constituant des conteneurs de déchets, est étudiée. Ces études démontrent que la réactivité de tels matériaux est principalement portée par les smectites dioctaédriques et les kaolinites qu'ils contiennent. En revanche, la présence de sulfures inhibe la réaction Fe(0)-argiles. La nature du produit de réaction dépend de la quantité de fer métal disponible. A pH basique, par contact physique avec les agents oxydants de la smectite (H+, OH- et Fe3+), le Fe(0) est corrodé. Cette réaction est favorisée par les hétérogénéités des surfaces latérales de la smectite, qui altérée définit un micro-domaine à l'intérieur duquel nucléent des serpentines-Fe si l'apport en fer est suffisant. De telles néoformations entrainent une diminution des propriétés de confinement de la barrière argileuse.
24

Le récepteur nucléaire de l'acide rétinoïque alpha (RARa) : nouveaux effets non-génomiques et nouveaux partenaires

Piskunov, Aleksandr 25 June 2012 (has links) (PDF)
Les récepteurs nucléaires de l'acide rétinoïque (AR) appelés RAR, se comportent comme des facteurs de transcription inductibles par le ligand. La transcription des gènes cibles induite par l'AR, nécessite la fixation des RAR au niveau de séquences spécifiques des promoteurs et met en jeu des changements conformationnels des récepteurs qui contrôlent l'association/dissociation de toute une panoplie de corégulateurs. Cependant, en plus de ce modèle génomique et nucléaire bien établi, l'équipe du Dr Cécile Rochette-Egly a montré récemment que l'AR a aussi des effets non-génomiques et induit rapidement la voie de signalisation p38MAPK/MSK1 qui ensuite cible les RAR pour des cascades de phosphorylations et module la transcription des gènes cibles. Pendant mon travail de thèse, j'ai mis en exergue trois nouveaux concepts originaux du mécanisme d'action du sous-type RARα. J'ai montré qu'une sous-population de RARα est présente dans des microdomaines membranaires, les radeaux lipiques ou "lipid rafts"où elle interagit avec les protéines Gαq. Cette interaction est le signal des effets non génomiques de l'AR, l'activation de la voie de la p38MAPK. Ces effets ont été corrélés à l'activité des gènes cibles de l'AR, prouvant ainsi leur nécessité. J'ai identifié un nouveau partenaire de RARα, la profiline IIA. J'ai analysé le mécanisme moléculaire de l'interaction et démontré qu'elle a lieu dans le noyau. La profiline IIA s'est révélée être un régulateur des effects génomiques de RARα et est recrutée avec RARα au niveau des promoteurs des gènes cibles. Finalement j'ai mis en évidence une nouvelle fonction de RARα dans le contrôle de l'adhésion et de l'étalement des cellules. D'où l'hypothèse de nouveaux effets génomiques de RARα avec la profiline IIA dans le contrôle de l'expression des protéines d'adhésion. Cependant, de manière inattendue, j 'ai identifié une nouvelle population de RARα dans le cytoplasme de ces cellules. D'où l'hypothèse de nouveaux effets non génomiques dans le cytoplasme, via l'interaction de RARα avec des protéines d'adhésion.

Page generated in 0.0576 seconds