11 |
Photoreactions of Chlorophyll at the Salt Water-air InterfaceReeser, Dorea 14 July 2009 (has links)
Glancing angle laser induced fluorescence was used to monitor the kinetics of the photodegradation of chlorophyll at the surface of various salt solutions. The loss was measured using varying wavelengths of actinic radiation in the presence and absence of gas phase ozone. The loss rate of illuminated chlorophyll was faster on salt water surfaces than fresh water surfaces, both in the presence and absence of ozone. On salt water surfaces, the dependence of the loss rate on [O3(g)] was different under illuminated conditions than in the dark. This was further investigated by measuring the excitation spectra and the dependence of chlorophyll loss on the concentration of salts at the salt water surface. The possible production of reactive halogen atoms is the likely reason for the observed enhancement. The following results provide evidence of photosensitized oxidation of halogen anions, in the UV-visible range of the spectrum, resulting in halogen atom release.
|
12 |
Photoreactions of Chlorophyll at the Salt Water-air InterfaceReeser, Dorea 14 July 2009 (has links)
Glancing angle laser induced fluorescence was used to monitor the kinetics of the photodegradation of chlorophyll at the surface of various salt solutions. The loss was measured using varying wavelengths of actinic radiation in the presence and absence of gas phase ozone. The loss rate of illuminated chlorophyll was faster on salt water surfaces than fresh water surfaces, both in the presence and absence of ozone. On salt water surfaces, the dependence of the loss rate on [O3(g)] was different under illuminated conditions than in the dark. This was further investigated by measuring the excitation spectra and the dependence of chlorophyll loss on the concentration of salts at the salt water surface. The possible production of reactive halogen atoms is the likely reason for the observed enhancement. The following results provide evidence of photosensitized oxidation of halogen anions, in the UV-visible range of the spectrum, resulting in halogen atom release.
|
13 |
DNA Analysis of Surfactant-Associated Bacteria in a Natural Sea Slick in the Gulf of Mexico Observed by TerraSAR-XHowe, Kathryn 31 July 2017 (has links)
Under low wind speed conditions, surfactants accumulate at the air-sea interface, dampen short-gravity capillary (Bragg) waves, and form natural sea slicks that are detectable visually and in synthetic aperture radar (SAR) imagery. Marine organisms, such as phytoplankton, zooplankton, seaweed, and bacteria, produce and degrade surfactants during various life processes. This study coordinates in situ sampling with TerraSAR-X satellite overpasses in order to help guide microbiological analysis of the sea surface microlayer (SML) and associated subsurface water (SSW). Samples were collected in the Gulf of Mexico during a research cruise (LASER) in February 2016 to determine abundance of surfactant associated bacteria in the sea surface microlayer and subsurface water column. By using real time polymerase chain reaction (quantitative PCR, or qPCR) to target Bacillus spp. associated with surfactant production, results indicate that more surfactant-associated bacteria reside in the subsurface water in low wind speed conditions. Sequencing results suggest that Bacillus and Pseudomonas are more abundant in the SSW in low wind speed conditions. These results indicate that these bacteria reside in the SSW, presumably producing surfactants that move to the surface via physical processes, accumulate on and enrich the sea surface microlayer.
|
14 |
Enhanced Dielectric Properties of Micro and Nanolayered Films for Capacitor ApplicationsMackey, Matthew E. 26 June 2012 (has links)
No description available.
|
15 |
Enhanced Dielectric Properties of Micro and Nanolayered Films for Capacitor ApplicationsMackey, Matthew 26 June 2012 (has links)
No description available.
|
16 |
Direct and Indirect Photochemical Degradation of Two Polycyclic Musk Fragrances and Two Polycyclic Aromatic Hydrocarbons in Natural WatersWard, Collin P. 08 September 2010 (has links)
No description available.
|
17 |
Marine biogenic polysaccharides as a potential source of aerosol in the high Arctic : Towards a link between marine biology and cloud formationGao, Qiuju January 2012 (has links)
Primary marine aerosol particles containing biogenic polymer microgels play a potential role for cloud formation in the pristine high Arctic summer. One of the major sources of the polymer gels in Arctic aerosol was suggested to be the surface water and more specifically, the surface microlayer (SML) of the open leads within the perennial sea ice as a result of bubble bursting at the air-sea interface. Phytoplankton and/or ice algae are believed to be the main origins of the polymer gels. In this thesis, we examine the chemical composition of biogenic polymers, with focus on polysaccharides, in seawater and airborne aerosol particles collected during the Arctic Summer Cloud Ocean Study (ASCOS) in the summer of 2008. The main results and findings include: A novel method using liquid chromatography coupling with tandem mass spectrometry was developed and applied for identification and quantification of polysaccharides. The enrichment of polysaccharides in the SML was shown to be a common feature of the Arctic open leads. Rising bubbles and surface coagulation of polymers are the likely mechanism for the accumulation of polysaccharides at the SML. The size dependencies of airborne polysaccharides on the travel-time since the last contact with the open sea are indicative of a submicron microgel source within the pack ice. The similarity of polysaccharides composition observed between the ambient aerosol particles and those generated by in situ bubbling experiments confines the microgel source to the open leads. The demonstrated occurrence of polysaccharides in surface sea waters and in air, with surface-active and hygroscopic properties, has shown their potential to serve as cloud condensation nuclei and subsequently promote cloud-drop activation in the pristine high Arctic. Presumably this possibility may renew interest in the complex but fascinating interactions between marine biology, aerosol, clouds and climate. / At the time of doctoral defence, the following paper was unpublished and had a status as follows: Paper 4: Manuscript
|
18 |
Investigations on the Effect of Heater Surface Characteristics on Bubble Dynamics in Subcooled Nucleate BoilingSarker, Debasish 29 October 2020 (has links)
Nucleating boiling is a repeating cycle of bubble initiation, growth and departure at many nucleation sites at the heated wall. Thereby, the bubble growth process significantly affects the dynamics of bubble departure. Experiments were performed to study the influence of heater surface characteristics, such as wettability and roughness, on single bubble growth and departure dynamics for natural circulation and upward flow boiling conditions. Self-assembled monolayer (SAM) coating, wet-etching and femtosecond pulsed laser treatment were used to alter the surface wettability and produce nano- and microstructures on stainless steel surfaces with a roughness in the range of micrometers. These surface preparation techniques allowed to separately quantify the effect of surface wettability and roughness on the bubble dynamics. The surface wettability and roughness are represented by the liquid contact angle hysteresis (θhys) and root mean square roughness of the surface (Sq). Boiling experiments were conducted at atmospheric pressure with degassed deionized water at low-subcooling. Stainless steel heater surfaces were vertically oriented during natural circulation boiling. In the experiments, bubbles were generated from an artificial nucleation cavity on the treated stainless steel heater surfaces. High-resolution optical shadowgraphy has been used to record the bubble generation, departure, sliding, detachment and inception of the next bubble. Higher bulk liquid velocity yielded smaller bubble departure diameters and slower bubble growth rates for all heater surface types. The effect of surface wettability on single bubble dynamics was studied for smooth surfaces with different liquid contact angle hysteresis. Low wetting surfaces yielded a greater bubble growth rate and departure diameter. The bubble growth rate and departure diameter were found maximum for an intermediate surface roughness Sq between 0.108 and 0.218 m. The corresponding roughness height is referred to as the ‘optimal roughness height’ in this work. Surface roughness was found very influential to the bubble growth and departure, which can be explained by considering its interaction with the microlayer underneath a bubble. The role of the heater surface parameters for the bubble growth was qualitatively assessed by evaluating the microlayer thickness constant C2. Hence, an improved bubble growth model was derived in this work. The bubble growth model was formulated on the basis of the evaporation of the microlayer beneath a bubble with the dryout area, inertia and heat diffusion controlled bubble growth and condensation at the bubble cap. The model can also predict the superheated liquid layer around a bubble which helps to determine the portion of a bubble that is in contact with the subcooled liquid. As bubble growth Abstract is highly dependent on the effective interactions of heater surface roughness and microlayer, a term Ceff was introduced in the bubble growth model. The effective microlayer thickness constant Ceff incorporates the impact of heater surface characteristics on the bubble growth process until the departure of a bubble. The bubble growth model was utilized in the analysis of high-resolution experimental data of steam bubble growth and the values of Ceff were calculated for different heater surface characteristics. The value of Ceff was found to decrease with the increase of bubble growth rate. A simplified model for the bubble departure criterion was derived from the expressions of forces which act on a nucleating bubble throughout its growth cycle. It was found that 90% of the departing bubbles satisfy the bubble departure criterion model with ±25% deviation. The knowledge gained from this work shall be particularly useful to improve nucleate boiling models for numerical simulations. The findings are also useful for designing heater surfaces in the future.:Abstract v
Kurzfassung vii
Acknowledgements xiii
Abbreviations and Symbols xv
Chapter 1: Introduction and Motivation 1
1.1 General overview 1
1.2 Theoretical background 3
1.3 Objectives and outline of the thesis 7
Chapter 2: Fundamentals of Bubble Dynamics in Nucleate Boiling 9
2.1 Bubble growth in nucleate boiling 9
2.2 Bubble growth models 12
2.3 The physical process of bubble departure 16
2.4 Experimental investigations of bubble dynamics 20
2.4.1 Effects of heater surface characteristics 21
2.4.2 Effects of bulk liquid velocity 24
2.5 Chapter conclusion 26
Chapter 3: Heater Surface Preparation and Characterization 27
3.1 Surface properties 27
3.2 Surface preparation 29
3.2.1 Self-assembled monolayer coating 30
3.2.2 High-power pulsed laser irradiation 31
3.2.3 Wet-etching 32
3.3 Surface cleaning 32
3.4 Surface characterization 32
3.4.1 Wettability measurement 32
3.4.2 Roughness measurement 33
3.4.3 Analysis of surface characteristics 34
3.4.4 Uncertainty of surface parameters 38
3.5 Artificial cavity preparation 38
Chapter 4: Experimental Setup and Procedure 41
4.1 Natural circulation boiling (NCB 41
4.1.1 Experimental procedure and measurement techniques 41
4.1.2 Uncertainty analysis 44
4.2 Upward flow boiling (UFB) 45
4.2.1 Experimental procedure and measurement techniques 45
4.2.2 Uncertainty analysis 48
4.3 Image processing 50
Chapter 5: Experimental Results 53
5.1 Introduction to the analysis of the bubble dynamics 53
5.1.1 The bubble life cycle 53
5.1.2 Calculation of the bubble equivalent diameter 55
5.1.3 Bubble dynamics with the increase of heat flux 57
5.1.4 Qualitative assessment of the bubble dynamics for different parameters 60
5.2 Bubble dynamics 61
5.2.1 Effect of heater surface wettability 61
5.2.2 Effect of heater surface roughness 65
5.2.3 Effect of bulk liquid velocity 70
5.3 Bubble departure 76
5.3.1 Effect of heater surface wettablity 76
5.3.2 Effect of heater surface roughness 76
5.3.3 Effect of bulk liquid velocity 78
5.4 Chapter conclusion 79
Chapter 6: Analysis and Model Development 81
6.1 Numerical evaluation of the role of heater surface characteristics 81
6.1.1 Derivation of an improved bubble growth model 86
6.1.2 Calculation of Ceff 82
6.2 Effect of liquid velocity on the bubble growth 93
6.3 Improved modeling of bubble departure 95
6.3.1 Analysis of important parameters 95
6.3.2 Formulation of a bubble departure criterion 100
6.4 Chapter conclusion 102
Chapter 7: Summary and Outlook 105
Bibliography 109
List of Figures 121
List of Tables 127
Appendix: Surface Parameters and Profile 129 / Der Blasenabriss von einer Keimstellenkavität ist ein komplexer Ablösemechanismus und spielt eine wichtige Rolle beim Wärmetransport. Zur Beschreibung der Blasendynamik sind Kenntnisse über den Blasenwachstumsprozess sowie die Vorhersage eines Kriteriums für die Blasenablösung erforderlich. In den existierenden Blasenwachstums- und Blasenablösungsmodellen wird die Oberflächencharakteristik des Heizers bisher nicht berücksichtigt. Im Rahmen dieser Promotion wurden Experimente durchgeführt, um den Einfluss der Heizeroberfläche und der Hauptströmungsgeschwindigkeit auf diese Parameter für eine vertikale Heizfläche zu untersuchen. Hierbei wurden das Naturkonvektionssieden und das aufwärtsgerichtete Strömungssieden betrachtet.
Die Experimente wurden mit vollentsalztem Wasser bei einer Unterkühlung zwischen 1,68 und 4,00 K bei Atmosphärendruck und einem aus Edelstahl gefertigten Heizer durchgeführt, dessen Oberfläche anhand der Parameter Oberflächenrauigkeit und Benetzbarkeit charakterisiert ist. Unterschiedliche Oberflächenbearbeitungstechniken, wie Beschichtung durch Self-Assembled Monolayer (SAM), Nass-Ätzen und Hochleistungspuls-Laserbestrahlung wurden genutzt, um die Oberflächenbenetzung und –rauigkeit zu modifizieren. Der Unterschied zwischen dem gemessenen Fortschritts- (θadv) und Rückzugskontaktwinkel (θrec) der Flüssigkeit wird als Flüssigkeitskontaktwinkelhysterese (θhys) bezeichnet und beschreibt die Oberflächenbenetzbarkeit. Die Oberflächenrauigkeit wurde durch ein Konfokal-Mikroskop bestimmt und durch das gemittelte Quadrat der Rauigkeit (Sq) und den Maximalwert der Rauigkeit (St) definiert. Insgesamt wurden 18 unterschiedliche Heizoberflächen mit einer Größe von 130 x 20 mm² untersucht. Davon kamen jeweils die Hälfte für das Naturkonvektionssieden bzw. aufwärtsgerichtetes Strömungssieden zur Anwendung. Der Einfluss der Oberflächenbenetzbarkeit auf die Blasendynamik wurde für polierte Oberflächen (Sq 0,01 μm) analysiert. Die Wirkung der Oberflächenrauigkeit auf die Blasendynamik wurde für konstante Flüssigkeitskontaktwinkelhysteresen von 40,05°±1,5° und 59,97°±1,5° für Naturzirkulation und Strömungssieden untersucht. Eine künstliche zylindrische Kavität mit einer Fläche von 1963,5 m² und einer Tiefe von 50 m wurde mittels Mikrolaser in die Heizoberflächen eingebracht, um die Blasen in einer spezifischen Position zu erzeugen. Während des Naturkonvektionssiedens betrug die Wärmestromdichte 19,22 bis 30,29 kW/m². Bei den Experimenten mit aufwärtsgerichtetem Strömungssieden wurde die Hauptströmungsgeschwindigkeit im Bereich von 0,052 bis 0,183 m/s variiert und eine Appendix: Surface Parameters and Profile Wärmestromdichte zwischen 39,41 und 45,47 kW/m² aufgeprägt. Daraus resultierten insgesamt 87 Experimentalserien. Um den Blasenlebenszyklus zu erfassen, wurde hochauflösende Bildgebungstechnik verwendet. Mit der Bildverarbeitungssoftware ImageJ wurden die erfassten Videos weiterverarbeitet. Die Temperatur der Hauptströmung wurde mit Typ-K Thermoelementen gemessen. Die zeit- und ortsgemittelten Heizerwandtemperaturen wurden für die Naturzirkulation durch Infrarotthermografie und für das aufwärtsgerichtete Strömungssieden durch Typ-K Thermoelemente erfasst. Die mittlere Flüssigkeitsgeschwindigkeit wurde bei der Naturzirkulation mittels Particle Image Velocimetry (PIV) und beim Strömungssieden mittels Coriolis-Durchflusszähler bestimmt. Eine hochauflösende optische Schattenbildtechnik diente zur Aufzeichnung der Hauptphasen des Blasenlebenszyklus: Blasenerzeugung, Blasenwachstum, Blasenablösung, Blasengleiten und Blasenabriss. In dieser Arbeit wurden die der Blasenablösung vorrausgehenden Phasen untersucht. Blasenhöhe, Blasenbreite, Blasenbasisdurchmesser und Schwerpunkt der Blase wurden mit Hilfe der Bildverarbeitung ermittelt. Der blasenäquivalente Durchmesser wurde mittels des geometrischen Mittelwertes, der Blasenbreite und der Blasenhöhe berechnet. Basierend auf den Messdaten können folgende Erkenntnisse für das Blasenwachstum und den Blasenablösemechanismus postuliert werden:
(i) Eine höhere Wärmeströmedichte führen zu größen Blasen und kürzeren Wachstumsperioden. Der Einfluss der Oberflächenbenetzbarkeit und der Oberflächenrauigkeit auf die Blasendynamik zeigt ähnliche Tendenzen für Naturkonvektion und aufwärtsgerichtetes Strömungssieden.
(ii) Eine höhere Flüssigkeitskontaktwinkelhysterese führt zu einer schnelleren Expansion der Blasenbasis und zu einem schnellern Blasenwachstum. Für gut benetzbare Oberflächen bewegt sich der Blasenschwerpunkt schneller entlang der Strömungsrichtung. Für Oberflächen mit geringer Benetzbarkeit ist die Blasengröße vor der Blasenablösung größer und die Ablöseperiode länger. Der mittlere Blasenablösedurchmesser für unterschiedliche Hauptströmungsgeschwindigkeiten der Flüssigkeit erhöht sich von 0,75 auf 1,75 mm bei zunehmender Flüssigkeitskontaktwinkelhysterese von 42,32° auf 62,30°.
(iii) Eine, bezogen auf die Mikrogrenzschichtdicke, optimale Oberflächenrauigkeit erhöht die Blasenwachstumsrate und die Blasengröße. Dieses Ergebnis ist bisher
einzigartig bei der Untersuchung der Einzelblasendynamik beim Blasensieden. Die Expansion der Blasenbasis und der Blasenwachstumsrate erreicht ein Maximum für das gemittelte Quadrat der Rauigkeit (Sq) im Bereich zwischen 0,156 und 0,202 m für Naturzirkulation. Für aufwärtsgerichtetes Strömungssieden war die Expansion der Blasenbasis und die Blasenwachstumsrate für Sq-Werte zwischen 0,108 und 0,218 m maximal. Der Blasenablösedurchmesser wurde für einen großen Bereich der Hauptströmungsgeschwindigkeiten und Wärmestromedichte gemittelt. Das Maximum des mittleren Ablösedurchmessers wurde für die Oberfläche mit einem Wert von Sq = 0,218 m erreicht. Die Oberflächenrauigkeit erweitert die Wärmeübertragungsoberfläche neben der Blasenbasis. Der Einfluss der Oberflächenrauigkeitshöhe auf die Blasen hängt von der Mikrogrenzschichtdicke sowie vom Blasenbasisradius ab. Das Modell der Mikrogrenzschichtdicke von Cooper und Lloyd [1] und die konzeptionelle Idee zur Störung der Mikrogrenzschicht durch die Rautiefe von Sriraman [2] wurden analysiert. Es wurde nachgewiesen, dass die Oberflächenrauigkeit die effektive Mikrogrenzschichtdicke und die dazugehörige Wärmeübertragung beeinflusst.
(iv) Es wurden geringere Blasenwachstumsraten für höhere Hauptströmungs-geschwindigkeiten gemessen. Weiterhin reduzieren sich der Blasenablösedurchmesser sowie Ablöseperioden mit zunehmender Hauptströmungsgeschwindigkeit bei unterschiedlichen Wärmeoberflächencharakteristiken. Bei niedrigen Hauptströmungs-geschwindigkeiten im Bereich zwischen ungefähr 0,052 und 0,16 m/s reduziert sich der durchschnittliche Blasenablösedurchmesser deutlich.
Die experimentellen Ergebnisse zeigen einen wesentlichen Einfluss der Oberflächenbeschaffenheit auf das Blasenwachstum und den Ablöseprozess beim Blasensieden. Um diesen Einfluss numerisch zu charakterisieren, wurde ein neues Blasenwachstumsmodel entwickelt. Existierende Blasenwachstumsmodelle berücksichtigen den umfangreichen Einfluss der Oberfläche des Heizers bisher nicht. Das vorgeschlagene Model bezieht die plausibelsten Mechanismen des Blasensiedens mit ein. Dazu zählen: Mikrogrenzschichtverdampfung im Bereich der Austrocknung, trägheits- und wärmediffusionskontrolliertes Blasenwachstum und Kondensation an der Blasenoberseite. Das Modell berücksichtigt, dass die überhitzte Flüssigkeitsschicht an der Heizerwand durch die wachsende Blase nach außen verdrängt wird und die so gestreckte Flüssigkeitsschicht einen Teil der Blase einhüllt. Kondensation erfolgt an der Blasengrenze, die in Kontakt mit der unterkühlten Flüssigkeit steht, und demzufolge mit der überhitzen Flüssigkeitsschicht nicht in Kontakt kommt. Das vorgeschlagene Blasenwachstumsmodel arbeitet mit drei Konstanten für die beschriebenen Wärmeübertragungsmechanismen beim Blasenwachstum. Dabei handelt es sich um eine Konstante für die effektive Mikrogrenzschichtdicke (Ceff ), eine weitere Konstante
𝑏 ́ für die Wärmediffusion hin zur Blase und der Trägheit sowie letztendlich einer Konstante S zur Abbildung des Kondensationswärmeübergangs, anhand der Beschreibung des Anteils der Blase, welcher in Kontakt mit der unterkühlten Flüssigkeit steht. Die effektive Mikrogrenzschichtdickenkonstante (Ceff) definiert den Einfluss der
Heizoberflächencharakteristik auf die Verdampfung der Mikrogrenzschicht und somit die Blasenwachstumsrate beim Blasensieden. Die numerisch berechnete und experimentell gemessene Blasengröße wurde verglichen, um die Mikrogrenzschichtdickenkonstante Ceff zu definieren. Der Einfluss der Kondensation auf Ceff wurde geprüft.:Abstract v
Kurzfassung vii
Acknowledgements xiii
Abbreviations and Symbols xv
Chapter 1: Introduction and Motivation 1
1.1 General overview 1
1.2 Theoretical background 3
1.3 Objectives and outline of the thesis 7
Chapter 2: Fundamentals of Bubble Dynamics in Nucleate Boiling 9
2.1 Bubble growth in nucleate boiling 9
2.2 Bubble growth models 12
2.3 The physical process of bubble departure 16
2.4 Experimental investigations of bubble dynamics 20
2.4.1 Effects of heater surface characteristics 21
2.4.2 Effects of bulk liquid velocity 24
2.5 Chapter conclusion 26
Chapter 3: Heater Surface Preparation and Characterization 27
3.1 Surface properties 27
3.2 Surface preparation 29
3.2.1 Self-assembled monolayer coating 30
3.2.2 High-power pulsed laser irradiation 31
3.2.3 Wet-etching 32
3.3 Surface cleaning 32
3.4 Surface characterization 32
3.4.1 Wettability measurement 32
3.4.2 Roughness measurement 33
3.4.3 Analysis of surface characteristics 34
3.4.4 Uncertainty of surface parameters 38
3.5 Artificial cavity preparation 38
Chapter 4: Experimental Setup and Procedure 41
4.1 Natural circulation boiling (NCB 41
4.1.1 Experimental procedure and measurement techniques 41
4.1.2 Uncertainty analysis 44
4.2 Upward flow boiling (UFB) 45
4.2.1 Experimental procedure and measurement techniques 45
4.2.2 Uncertainty analysis 48
4.3 Image processing 50
Chapter 5: Experimental Results 53
5.1 Introduction to the analysis of the bubble dynamics 53
5.1.1 The bubble life cycle 53
5.1.2 Calculation of the bubble equivalent diameter 55
5.1.3 Bubble dynamics with the increase of heat flux 57
5.1.4 Qualitative assessment of the bubble dynamics for different parameters 60
5.2 Bubble dynamics 61
5.2.1 Effect of heater surface wettability 61
5.2.2 Effect of heater surface roughness 65
5.2.3 Effect of bulk liquid velocity 70
5.3 Bubble departure 76
5.3.1 Effect of heater surface wettablity 76
5.3.2 Effect of heater surface roughness 76
5.3.3 Effect of bulk liquid velocity 78
5.4 Chapter conclusion 79
Chapter 6: Analysis and Model Development 81
6.1 Numerical evaluation of the role of heater surface characteristics 81
6.1.1 Derivation of an improved bubble growth model 86
6.1.2 Calculation of Ceff 82
6.2 Effect of liquid velocity on the bubble growth 93
6.3 Improved modeling of bubble departure 95
6.3.1 Analysis of important parameters 95
6.3.2 Formulation of a bubble departure criterion 100
6.4 Chapter conclusion 102
Chapter 7: Summary and Outlook 105
Bibliography 109
List of Figures 121
List of Tables 127
Appendix: Surface Parameters and Profile 129
|
19 |
Advanced Polymeric Membranes and Multi-Layered Films for Gas Separation and CapacitorsShaver, Andrew Thomas 30 June 2016 (has links)
The following studies describe the synthesis and properties of a family of poly(arylene ether ketone)s which are well known to have good thermal stability, mechanical durability, and other film properties. These poly(arylene ether ketone)s were functionalized with fluorine, oxidized, blended, and crosslinked to increase performance with focus on materials for polymeric capacitors and gas separation membranes.
There is a need for polymeric capacitors with improved energy storage density and thermal stability. In this work, the affect of polymer molecular structure and symmetry on Tg, breakdown strength, and relative permittivity was investigated. A systematic series of four amorphous poly(arylene ether ketone)s was compared. Two of the polymers had symmetric bisphenols while the remaining two had asymmetric bisphenols. Two contained trifluoromethyl groups while the other two had methyl groups. The symmetric polymers had Tg's of approximately 160 °C while the asymmetric polymers showed higher Tg's near 180 °C. The symmetric polymers had breakdown strengths near 380 kV/mm at 150 °C. The asymmetric counterparts had breakdown strengths near 520 kV/mm even at 175 °C, with the fluorinated polymers performing slightly better in both cases. The non-fluorinated polymers had higher relative permittivities than the fluorinated materials, with the asymmetric polymers being better in both cases.
Two amorphous, high glass transition, crosslinkable poly(arylene ether)s for gas purification membranes have been studied. The polymers were polymerized via step growth and contained tetramethyl bisphenol F and either 4,4'-difluorobenzophenone or 4,4'-dichlorodiphenylsulfone. The benzylic methylene group in tetramethyl bisphenol F can undergo oxidation reactions and crosslinking with UV light. The polymers were oxidized under two different conditions, one by chemical treatment using oxone and KBr and one by elevated thermal treatment in air. Thermogravimetric analysis, 1H-NMR and attenuated total reflectance Fourier transform infrared spectroscopy revealed the progress of the thermal oxidation reactions. Both polymers produced tough, ductile films and gas transport properties of the non-crosslinked linear polymers and crosslinked polymer was compared. Crosslinking was performed by irradiating polymer films for one hour on each side in air under a 100W high intensity, long-wave UV lamp equipped with a 365-nm light filter. The O2 permeability of tetramethyl bisphenol F containing non-crosslinked poly(arylene ether ketone) was 2.8 Barrer, with an O2/N2 selectivity of 5.4. Following UV crosslinking, the O2 permeability decreased to 1.8 Barrer, and the O2/N2 selectivity increased to 6.2.
Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is a commercial polymer that is utilized for gas separation membranes. It has a relatively high free volume with high gas permeabilities but suffers from low gas selectivities. In this study, PPO polymers with number average molecular weights of 2000, 6000, 17,000, 19,000 and 22,000 were synthesized and blended with a poly(arylene ether ketone) synthesized from bisphenol A and difluorobenzophenone (BPA-PAEK) to make UV-crosslinkable films. The ketone and benzylic methylene groups on the BPA-PAEK and the PPO polymers respectively formed crosslinks upon exposure to broad wavelength UV light. The crosslinked blends had increased selectivities over their linear counterparts. DSC thermograms showed that the blends with all but the lowest molecular weight PPO had two Tg's, thus suggesting that two phases were present, one high in PBA-PAEK and the other high in PPO composition. The PBA-PAEK blend with the 2000 Mn PPO showed only one Tg between the two control polymers. Despite the immiscibility of these films, the gel fractions after UV exposure were high. Gel fractions as a function of the amount of the 22,000 Mn PPO were explored and did not show any significant change. UV spectroscopy of the individual components and the blends showed that more broad wavelength light was transmitted through the PPO component, so it was reasoned that films that was high in PPO composition crosslinked to deeper depths. The O2/N2 permeabilities and selectivities were measured for the linear and crosslinked films. Between the 33/67, 67/33, and 90/10 22k PPO/BPA PAEK crosslinked blended films, the 90/10 PPO/BPA PAEK gained the most selectivity and maintained a larger amount of its permeability. In comparison to commercial gas separation polymers, the non-crosslinked 33/67 22,000 Mn PPO/BPA PAEK blend outperformed polysulfone and cellulose acetate with a 2.45 degree of acetylation. Overall, we were able to blend a small amount of BPA PAEK with the commercially used PPO to create a mechanically robust crosslinked polymer film. / Ph. D.
|
20 |
Microbial Analysis of Surfactant-Associated Bacteria in the Sea Surface Microlayer and Remote Sensing of Associated SlicksParks, Georgia 19 July 2019 (has links)
The sea-surface microlayer (SML) is the boundary layer at the air-sea interface where many biogeochemical processes occur. Many organisms (e.g., bacteria) produce surface active agents (surfactants) for life processes, which accumulate in the SML and dampen short gravity-capillary waves, resulting in sea surface slicks. Synthetic aperture radar (SAR) is capable of remotely sensing these features on the sea surface by measuring reflected backscatter from the ocean surface in microwaves. This study coordinates SAR overpasses with in situ SML and subsurface (SSW) microbial sample collection to guide subsequent analysis after 16s rRNA sequencing on the Illumina MiSeq. In April 2017, 138 SML and SSW samples were collected near a targeted oil-seep where the Taylor Platform was knocked down in the Gulf of Mexico, both in and out of visually-observed oil slicks. In July and August 2018, 220 SML and SSW samples were collected near the Looe Key coral reef and a coastal seagrass area. Analysis of microbial abundance and diversity between the two experiments shows that within oil slicks, surfactant- and oil-associated bacteria prefer to reside within the SSW rather than in the SML. In natural slicks in the coastal seagrass area, these bacteria are more abundant in the SML. Outside of these slicks, surfactant-associated bacteria are more abundant within the SML than the SSW. This suggests that the presence of oil reduces the habitability of the SML, whereas natural slicks created by foam and other surfactants creates a more habitable environment in the SML. With lower wind speed, abundance of these bacteria are greater, as increased wind speed results in a harsher environment. The diurnal cycle had an effect on the relative abundance of surfactant-associated bacteria in the SML and SSW. Our results demonstrate the usefulness of synthetic aperture radar to remotely sense sea surface slicks in coordination with in situ surfactant-associated bacteria data collection of the sea surface slicks.
|
Page generated in 0.0378 seconds