• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability of nickel-base superalloys for turbine disc applications

Wilson, Alison Sarah January 2018 (has links)
Requirements for increased operating efficiencies mean that future generations of aero-engines will need to operate at temperatures beyond the capabilities of current nickel-base superalloys. As a result, new alloy compositions for turbine disc applications are being developed. Optimising these alloy compositions requires balancing directly competing requirements. Increased Cr contents are needed to provide environmental resistance and increased concentrations of other refractory metals to improve solid solution strengthening. However, these elements compromise the alloyâs long-term microstructural stability by promoting the formation of topologically close-packed (TCP) phases, which are deleterious to alloy performance. High $\gamma^\prime$ volume fractions, which are needed to provide high-temperature strength, exacerbate the problem by increasing the concentration of these elements in the $\gamma$ phase. Therefore, an understanding of TCP formation and the compositional limits of stability is vital in the design of new alloys. This thesis presents a combination of fundamental studies of TCP phase formation in model alloys and microstructural assessment of the thermal stability of developmental alloy compositions. Knowledge of the effect of individual elements on thermal stability is important to enable the development of optimised alloy compositions. As a result, the first fundamental study investigated the effect of Co content on thermal stability. An unexpected transition in $\sigma$ precipitation behaviour after 500 hours at 800°C was observed between 12 and 16 at.\% Co. It is proposed that this behaviour may be due to the effect of Co on the $\gamma$/$\gamma^\prime$ partitioning behaviour of other elements. Preliminary results from further fundamental studies investigating the effect of the Mo/W ratio and B content on thermal stability are also presented. Decreasing the Mo/W ratio was found to reduce the quantity of $\sigma$ precipitation and promote the precipitation of a W-rich phase. B additions were found to promote the precipitation of the M$_3$B$_2$ phase. Thermodynamic predictions are frequently used to inform alloy design as an alternative to time-consuming and costly experiments. However, the accuracy of solvus temperature predictions for TCP phases has not been thoroughly considered. In this work, it was found that differential scanning calorimetry could be used as a means of measuring $\sigma$ solvus temperature in a series of alloys designed to be sufficiently unstable with respect to $\sigma$ precipitation. Comparison of experimental results with thermodynamic solvus temperature predictions revealed a significant underprediction of the $\sigma$ solvus temperatures for all of the studied alloys. This can inform our use of such predictions during alloy design. The ability to quantify the amount of TCP precipitation that occurs is extremely important when assessing the thermal stability of alloys. A new method was applied to the problem of TCP quantification, involving synchrotron X-ray diffraction of solid aged samples. This was an attempt to avoid some of the problems identified with the commonly used quantification method, which involves electrolytic extraction of minor phases, and assess the accuracy of the results produced by this method. Samples of a currently used commercial alloy, RR1000, were investigated following ageing for up to 5000 hours at 800°C, revealing the evolution of phases at this temperature. The presence of extremely low quantities of minor phases was successfully detected in the solid samples using this method. However, these quantities were too low for this to be a reliable method of quantification for commercial alloys. In parallel with these fundamental and technique-based studies, the thermal stability of a number of candidate alloys, which were developed during the design of a next-generation disc alloy by Rolls-Royce, was assessed. The alloys were characterised following a variety of thermal exposure temperatures and durations, which were determined by industrial needs at the time. Various minor phases were identified depending on the alloy compositions, including the TCP phases, $\sigma$ and $\mu$, as well as MC and M$_{23}$C$_6$ carbides and M$_3$B$_2$ borides.
2

Mikrostrukturní stabilita heterogenních svarů wolfram - ODS / Microstructure stability of tungsten -ODS hetergeneous welds

Adam, Ondřej January 2018 (has links)
The thesis is focused on microstructural stability of heterogeneous weld joint of ODS steel and tungsten. The theoretical part summarizes the basic information about the structure and properties of ODS steels and describes the methods of joining these steels with tungsten. In the experimental part, materials MA956 and WL10 were welded by using electron beam. The individual samples differ by preheating temperature or use filler material. After annealing at 800 °C/1h and 1000 °C/5h, a change of the weld metal microstructure was evaluated by using scanning electron microscope. The chemical composition was measured by energy dispersive spectroscopy. It has been found that during annealing, massive precipitation of particles occures in the whole volume of the weld metal. These particles were identified as Laves phase.
3

Mechanisms and Effect of Microstructure on High Temperature Deformation of Gamma-TiAl Based Alloys

Subramanian, Karthikeyan 19 March 2003 (has links)
No description available.
4

Desenvolvimento \"in situ\" de aluminetos de níquel por plasma por arco transferido resistentes à oxidação. / Development \"in situ\" of nickel aluminides by plasma transferred arc resistant to the oxidation.

Benegra, Marjorie 23 August 2010 (has links)
O presente trabalho objetiva o desenvolvimento in situ por plasma por arco transferido (PTA) de aluminetos de Níquel resistentes à oxidação, baseados em uma liga NiCrAlC referência. Para tanto, foram depositadas misturas preliminares de pós elementares e também utilizando o pó atomizado, variando somente a intensidade de corrente (130 e 160 A) para se obter diferentes misturas com o substrato. Após as deposições, a incorporação de elementos do substrato nos cordões não permitiu a formação de aluminetos para os revestimentos processados com a mistura de pós elementares. Estes apresentaram valores de diluição consideravelmente maiores do que os cordões obtidos com pó atomizado, que resultaram em aluminetos de Níquel. Com base nos resultados preliminares, quatro novas composições com mistura de pós elementares foram estimadas e os cordões finais, processados com 100 ou 130 A, resultaram em aluminetos como esperado. Duas composições foram submetidas a ensaios em balança termo gravimétrica (TGA) e a ciclos isotérmicos em forno mufla para diferentes temperaturas (máximo de 1000 graus Celsius) e tempos de exposição (até 72 horas no máximo). Os resultados mostraram que a incorporação de Ferro nos revestimentos durante a deposição retardou a formação das camadas de óxidos, sendo que maiores teores deste elemento aceleraram a formação da camada de alumina alfa, o que propiciou uma redução nos valores de constante de oxidação parabólica a 1000 graus Celsius nos estágios iniciais da oxidação. Os revestimentos apresentaram melhores desempenhos à oxidação do que a liga NiAlCrC fundida, traduzido pelo menor ganho de massa. A exposição nas temperaturas de ensaio provocou uma queda de dureza e na evolução ou nucleação de uma provável fase sigma. / This research aimed at the development in situ by plasma transferred arc (PTA) of nickel aluminides resistant to the oxidation, based on a reference NiCrAlC alloy. For this purpose, preliminary mixtures of elemental powders were deposited, and also using the atomized powder, varying the current intensity (130 and 160 A) only to obtain different mixtures with substrate. After the depositions, the incorporation of substrate elements into the welds did not allow the formation of aluminides in the coatings processed with the elemental powder mixture. These coatings presented dilution values considerably higher than those obtained with atomized powder, which result in nickel aluminides. Based on the preliminary results, additional four compositions with elemental powders were estimated and the final welds, processed with 100 or 130 A, were composed by aluminides as expected. Two compositions were submitted to the thermogravimetry tests and isothermal cycles in an oven for different temperatures (1000 Celsius max) and exposure times (for 72 hours at maximum). The results showed that the iron incorporation in the coatings during depositions delayed the oxides scales formation, since higher contents of this element accelerated the formation of -alumina, which promoted a reduction in the parabolic constant of oxidation for 1000 Celsius in the earlier stages of oxidation. The coatings presented better oxidation resistance than that observed for as-cast NiCrAlC, observed by their smaller mass losses. The exposure to the testing temperatures resulted in a decrease of hardness and in the evolution or nucleation of sigma phase.
5

Desenvolvimento \"in situ\" de aluminetos de níquel por plasma por arco transferido resistentes à oxidação. / Development \"in situ\" of nickel aluminides by plasma transferred arc resistant to the oxidation.

Marjorie Benegra 23 August 2010 (has links)
O presente trabalho objetiva o desenvolvimento in situ por plasma por arco transferido (PTA) de aluminetos de Níquel resistentes à oxidação, baseados em uma liga NiCrAlC referência. Para tanto, foram depositadas misturas preliminares de pós elementares e também utilizando o pó atomizado, variando somente a intensidade de corrente (130 e 160 A) para se obter diferentes misturas com o substrato. Após as deposições, a incorporação de elementos do substrato nos cordões não permitiu a formação de aluminetos para os revestimentos processados com a mistura de pós elementares. Estes apresentaram valores de diluição consideravelmente maiores do que os cordões obtidos com pó atomizado, que resultaram em aluminetos de Níquel. Com base nos resultados preliminares, quatro novas composições com mistura de pós elementares foram estimadas e os cordões finais, processados com 100 ou 130 A, resultaram em aluminetos como esperado. Duas composições foram submetidas a ensaios em balança termo gravimétrica (TGA) e a ciclos isotérmicos em forno mufla para diferentes temperaturas (máximo de 1000 graus Celsius) e tempos de exposição (até 72 horas no máximo). Os resultados mostraram que a incorporação de Ferro nos revestimentos durante a deposição retardou a formação das camadas de óxidos, sendo que maiores teores deste elemento aceleraram a formação da camada de alumina alfa, o que propiciou uma redução nos valores de constante de oxidação parabólica a 1000 graus Celsius nos estágios iniciais da oxidação. Os revestimentos apresentaram melhores desempenhos à oxidação do que a liga NiAlCrC fundida, traduzido pelo menor ganho de massa. A exposição nas temperaturas de ensaio provocou uma queda de dureza e na evolução ou nucleação de uma provável fase sigma. / This research aimed at the development in situ by plasma transferred arc (PTA) of nickel aluminides resistant to the oxidation, based on a reference NiCrAlC alloy. For this purpose, preliminary mixtures of elemental powders were deposited, and also using the atomized powder, varying the current intensity (130 and 160 A) only to obtain different mixtures with substrate. After the depositions, the incorporation of substrate elements into the welds did not allow the formation of aluminides in the coatings processed with the elemental powder mixture. These coatings presented dilution values considerably higher than those obtained with atomized powder, which result in nickel aluminides. Based on the preliminary results, additional four compositions with elemental powders were estimated and the final welds, processed with 100 or 130 A, were composed by aluminides as expected. Two compositions were submitted to the thermogravimetry tests and isothermal cycles in an oven for different temperatures (1000 Celsius max) and exposure times (for 72 hours at maximum). The results showed that the iron incorporation in the coatings during depositions delayed the oxides scales formation, since higher contents of this element accelerated the formation of -alumina, which promoted a reduction in the parabolic constant of oxidation for 1000 Celsius in the earlier stages of oxidation. The coatings presented better oxidation resistance than that observed for as-cast NiCrAlC, observed by their smaller mass losses. The exposure to the testing temperatures resulted in a decrease of hardness and in the evolution or nucleation of sigma phase.
6

Mikrostruktura, její stabilita a únavové vlastnosti ultrajemnozrnné mědi připravené metodou ECAP / Microstructure, it´s Stability and Fatigue Properties of Ultra-Fine Grained Copper Prepared by ECAP Method

Navrátilová, Lucie January 2012 (has links)
This work deals with fatigue properties and stability of microstructure of ultrafine-grained (UFG) copper prepared by severe plastic deformation by means of equal channel angular pressing (ECAP) method. The effect of different fatigue loading regimes and thermal exposition on microstructural changes was investigated and the fatigue lifetime curves were experimentally determined. The research attention was focussed on localization of cyclic plastic deformation and fatigue crack initiation in UFG structure. Experimental results indicate that after stress-controlled fatigue loading (both symmetrical and asymmetrical) the microstructure remains ultrafine; no grain coarsening was observed. Contrary to this, strain-controlled fatigue loading results in formation of bimodal structure. Grain coarsening was observed also after thermal exposition at 250 °C for 30 minutes. Annealing at lower temperatures does not result in grain coarsening or development of bimodal structure. Fatigue loading results in development of surface relief in form of cyclic slip markings. Their density, distribution and shape differ for particular fatigue loading regimes. Differences in crack initiation mechanism in low- and high-cycle fatigue region were found. Nevertheless, the characteristic feature for all loading regimes was stability of UFG microstructure in the region of cyclic slip bands and fatigue cracks.
7

Strukturní stabilita svarových spojů austenitických a feritických ocelí / Microstructural Stability of Weld Joints of Austenitic and Ferritic Steels

Šohaj, Pavel January 2014 (has links)
This doctoral thesis summarizes the theoretical and experimental knowledge in the field of dissimilar weld joint of progressive austenitic and ferritic creep-resistant steels. The following materials were selected for the presented study: 316Ti stabilized austenitic stainless steel, martensitic 9-12 %Cr steel P92 and ferritic ODS steel MA 956. The main attention was focused on the long-term microstructural stability during high temperature exposure of heterogeneous joints of the austenite / ferrite type. The literature analysis critically evaluates the current state of knowledge in the field of microstructural stability of advanced creep-resistant steels weld joints. The practical experimental part was carried out in two directions. On the basis of the chemical composition phase equilibrium calculations were performed for each steel using the ThermoCalc software, giving the basic concepts about the dependence of the phase composition and the chemical composition of phases on temperature. In parallel with these calculations the laboratory joints 316Ti/P92 made by resistance welding and the MA 956/316Ti electron beam weld joints were prepared, analyzed in as-weld state and further annealed at different temperature conditions. Exposed joints were subjected to microstructure and phase analysis. The stability of the weld interface was mainly observed. Attention was also focused on the agreement between the calculation and experimental data in comparison with data published in the literature. Based on the calculations, experimental results and published data the suitability of the combination of materials is discussed in the thesis and reasoning about the behavior of studied weld joints during long-term high temperature exposure was formulated. Based on the results the expected degree of microstructural stability of 316Ti/P92 joint was confirmed, while the joints MA 956/316Ti were found to be unstable.
8

Microstructural Stability of Fully Lamellar and Duplex y-TiAl Alloys During Creep

Babu, R Prasath January 2012 (has links) (PDF)
γ-TiAl based alloys have attracted considerable research interest in the past few decades and have gained niche high temperature applications in aero-engines and automobiles. As high temperature structural materials, these alloys require stable microstructures. This thesis aims at addressing knowledge gaps in the understanding of microstructural stability in two technologically important γ-TiAl based alloys in different microstructures, viz. fully lamellar (FL) and duplex. Creep and exposure tests were complemented with a variety of microstructural characterization tools (SEM, EBSD, TEM, XRD). Density functional theory based calculations were also performed to further the understanding of stability of phases. In the first part of the thesis, microstructural stability of a FL microstructure was studied under creep and high temperature exposure conditions. An aim of these studies was to probe the effect of stress orientation with respect to lamellar plates on microstructural changes during primary creep. It was observed that retention of excess α2 resulted in an unstable microstructure and so under stress and temperature, excess α2 was lost. However, depending on stress orientation, the sequence of precipitates formed was different. In particular, for certain stress orientations, the formation of the non-equilibrium C14 phase was observed. The stress dependence of microstructural evolution was found to be stem from internal stresses due to lattice misfit and elastic moduli mismatch between α2 and γ. In the second part of this thesis, microstructural stability of a duplex alloy was probed, with an emphasis on understanding mechanisms that lead to tertiary creep. The as-extruded microstructure consisted of bands of equiaxed grains and lamellar grains. During creep, loss of lamellar grains was observed and this was attended by kinking of laths and formation of dynamically recrystallized equiaxed grains. Significant dislocation activity was seen in both lamellar and equiaxed grains at all stages of creep. Initially, dislocation activity leads to strengthening and primary creep behavior, but at later stages, it triggers dynamic recrystallization. Dynamic recrystallization was found to be the rate controlling creep mechanism. Accelerating creep behavior was due to strain localization during the constant load tensile test resulting from microstructural instabilities such as kinking.

Page generated in 0.1081 seconds