• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microwave and RF system for Industrial and Biomedical Applications

Manekiya, Mohammedhusen Hanifbhai 27 May 2021 (has links)
Modern smartphone technology has created a myriad of opportunities in the field of RF and Microwave. Specifically, Chipless RFID sensor, compact microwave filter, antenna based on a microstrip structure, and many more. In this thesis, innovative ideas for the industrial and biomedical device has been explored. The work presents the reconfigurable filter design, Switch-beam antenna, Microwave interferometer, X-band Rotman Lens antenna, Ultra-wideband antenna based on SIW resonator, L-band Stepped Frequency Continuous Wave antenna, development of a wireless sensor system for environmental monitoring, Indoor Air Quality monitoring, and Wildfire Monitoring based on the modulated scattering technique (MST). The MST sensor probes are based on the scattering properties of small passive antennas and radiate part of the impinging electromagnetic field generated by an interrogating antenna, which also acquires the backscattered signal as information. The MST probes are able to deliver data without a radio frequency front end. They use a simple circuit that alternatively terminates the antenna probe on suitable loads to generate a low modulation signal on the backscattered electromagnetic wave. The antenna presented in this work has been designed in ADS Software by Keysight Technologies. The designed antenna has been assessed numerically and experimentally. The experimental measurement data demonstrate the effectiveness of the individual system. Simultaneously, the MST sensor system has been proposed to obtain the best performance in communication range, load efficiency, and power harvesting. The MST sensor has been fabricated and assessed in practical scenarios. The proposed prototype, able to provide a communication range of about 15 m, serves as a proof-of-concept. The acquired measurements of MST demonstrate the accuracy of the data without radio frequency front end or bulky wired connection with the same efficiency of standard wireless sensors such as radio frequency identifier (RFID) or wireless sensor networks (WSN).
12

Synthèse de filtres hyperfréquences prenant en compte le comportement dispersif des couplages / Synthesis of microwave filters taking into account the dispersive couplings

Haidar, Ahmad 13 December 2018 (has links)
Ces travaux de thèse concernent la mise au point d’une méthodologie de conception de filtres passe-bandes à couplages dispersifs permettant d’optimiser la sélectivité de ces filtres en générant et en contrôlant la position de zéros de transmission supplémentaires. Un état de l’art sur les différentes approches proposées dans la littérature pour la synthèse de filtres hyperfréquences à couplage dispersif est d’abord proposé. Cette analyse est illustrée par plusieurs exemples concrets, et une structure en particulier, comportant un couplage par plot capacitif, constitue le point de départ des travaux. De nouveaux éléments de couplage dispersifs ont été ensuite proposés, capables de générer aussi bien des couplages positifs que négatifs, permettant ainsi de positionner les zéros de transmission dans la bande stoppée supérieure ou inférieure. Ces éléments ont alors été intégrés dans des structures de filtrage plus complexes pour réaliser par exemple des structures en ligne possédant plusieurs zéros de transmission hors bande ou des filtres multibandes à la sélectivité renforcée. Plusieurs des dispositifs conçus ont été fabriqués et mesurés. Les résultats expérimentaux sont en bon accord avec les simulations validant ainsi l’approche proposée. / This thesis report deals with the development of a methodology for the design of bandpass filters including dispersive coupling to optimize the selectivity of these filters by generating and controlling the position of additional transmission zeros. A state of the art on the different approaches proposed in the literature for the synthesis of microwave filters with dispersive coupling is first proposed. This analysis is illustrated by several concrete examples, and a structure in particular, comprising a coupling capacitive post, is the starting point of the work. New dispersive coupling elements were then proposed, capable of generating both positive and negative couplings, thus enabling the transmission zeros to be positioned in the upper or lower stopped band. These elements have then been integrated in more complex filtering structures to achieve, for example, on-line structures having several out-of-band transmission zeros or multiband filters with enhanced selectivity. Many of the devices designed have been manufactured and measured. The experimental results are in good agreement with the simulations validating the proposed approach.
13

Integrated RF modules and passives on low-cost flexible materials for applications up to the mm-wave frequency range

Rida, Amin Hassan 04 April 2011 (has links)
The objective of the proposed research is to develop solutions for High-Performance Low-Cost Passives for Radar, Identification, and Communication Applications up to mm-Wave Frequencies. This research will bring to the table potential solutions that will meet three main requirements: small size (or low weight), high performance, and low cost. This research embarks on antenna design and development for passive RFID tags on LCP substrates, and then a transition towards lower cost modules investigates and explores the possibilities of using paper as RF substrates with inkjet printing as a low cost fabrication technology. Modules such as dual band antenna for Wifi frequencies (2.4 GHz and 5 GHz) and UWB (up to 10GHz) on paper substrate using inkjet printing are presented. This work then bridges into developing higher frequency modules. These include: highly selective filter design on LCP for X-band Radar application to be used as a benchmark for an easy adjustment for higher frequencies, and antenna modules LCP using inkjet printing for communication such as mm-Wave WLAN or WPAN. A transition into mm-Wave Modules then takes place for the general realization of low-cost high-performance mm-Wave modules and more specifically the low cost automotive radar. After proposing an architecture for integrated mm-Wave module, this work then investigates 2D/3D interconnections (and their integration with antennas) on LCP using conventional etching design guidelines up to 100GHz. Antenna arrays that are implemented with phase shifters for beam steering are then designed using edge fed and multilayer technology. Furthermore, crosstalk reductions for highly dense transmission lines are analyzed via simulations for the optimum performance and space saving of such mm-Wave modules such as the IC interface where space restrictions are strictly enforced.
14

Some Aspects of Advanced Technologies and Signal Integrity Issues in High Frequency PCBs, with Emphasis on Planar Transmission Lines and RF/Microwave Filters

Mbairi, Felix D. January 2007 (has links)
The main focus of this thesis is placed on high frequency PCB signal Integrity Is-sues and RF/Microwave filters using EBG structures. From the signal Integrity aspect, two topics were mainly discussed. On one hand, the effect of increasing frequency on classical design rules for crosstalk reduction in PCBs was investigated experimentally and by full-wave simulations. An emphasis was placed on the 3×W spacing rule and the use of guard traces. Single-ended and differential transmission lines were considered. S-parameter measurements and simu-lations were carried out at high-frequency (up to 20 GHz). The results emphasize the necessity to reevaluate traditional design rules for their suitability in high frequency applications. Also, the impacts of using guard traces for high frequency crosstalk re-duction were clearly pointed out. On the other hand, the effect of high loss PCB ma-terials on the signal transmission characteristics of microstrip lines at high frequency (up to 20 GHz) was treated. Comparative studies were carried out on different micro-strip configurations using standard FR4 substrate and a high frequency dielectric ma-terial from Rogers, Corporation. The experimental results highlight the dramatic im-pact of high dielectric loss materials (FR4 and solder mask) and magnetic plating metal (nickel) on the high frequency signal attenuation and loss of microstrip trans-mission lines. Besides, the epoxy-based SU8 photoresist was characterized at high frequency (up to 50 GHz) using on-wafer conductor-backed coplanar waveguide transmission lines. A relative dielectric constant of 3.2 was obtained at 30 GHz. Some issues related to the processing of this material, such as cracks, hard-skin, etc, were also discussed. Regarding RF/Microwave filters, the concept of Electromagnetic Band Gap (EBG) was used to design and fabricate novel microstrip bandstop filters using periodically modified substrate. The proposed EBG structures, which don’t suffer conductor backing issues, exhibit interesting frequency response characteristics. The limitations of modeling and simulation tools in terms of speed and accuracy are also examined in this thesis. Experiments and simulations were carried out show-ing the inadequacies of the Spice diode model for the simulations in power electronics. Also, an Artificial Neural Network (ANN) model was proposed as an alternative and a complement to full-wave solvers, for a quick and sufficiently accurate simulation of interconnects. A software implementation of this model using Matlab’s ANN toolbox was shown to considerably reduce (by over 800 times) the simulation time of microstrip lines using full-wave solvers such as Ansoft’s HFSS and CST’s MWS. Finally, a novel cooling structure using a double heatsink for high performance electronics was presented. Methods for optimizing this structure were also discussed. / QC 20100809
15

Compact Ku-band Microwave Filters Realised using Suspended Integrated Stripline Technology / Kompakta Mikrovågsfilter för Ku-bandet Realiserade i Integrerad Hängande-Substrat-Stripline

Åkerberg, Henrik January 2023 (has links)
As the fifth generation of telecommunications is deployed, and the number of devices transmitting in the microwave bands grows, effective filtering technologies are becoming ever more important. When a filter is designed, some performance trade-offs have to be made, and one of them is the trade-off between filter size and electrical performance. This thesis addresses this tradeoff by proposing two fourth order all-pole Chebyshev filters in the Ku band realised in suspended integrated stripline technology, which combine a small physical footprint with high unloaded Q-values. These characteristics make it possible to create more compact systems, or increase the filtering capability in systems where the existing filter size is the limiting factor. The first filter was designed with the goal of maximum compactness, with the resonators made up of metallic strips on both sides of the microwave substrate, with intra-resonator capacitive coupling between the strip, and inter-resonator capacitive coupling mainly between adjacent resonators. The second filter was made slightly larger but with improved electrical performance, with the main difference being a via shorting the resonator strips together, largely confining the electric field to the suspended integrated stripline’s air cavity. The comparison between these filters allows a potential systems engineer to make an informed decision on how compact a filter could be while still providing good enough performance. Both filters had a return loss less than 20 dB in the entire passband, the first filter had an insertion loss ranging from -2.15 dB to -1.6 dB, and the second filter had an insertion loss ranging from -2 dB to -1.1 dB. / I takt med att den femte generationen av telekommunikationsteknologi utvecklas och lanseras så finner sig kommunikationssystem i en allt mer brusig signalmiljö. Fler och fler system kommer att behöva dela på det tillgängliga elektromagnetiska spektrat, och därmed behövs allt mer effektiv teknologi för att filtrera signalerna, både på mottagar- och sändarsidan. Trådlös kommunikation sker med hjälp av elektromagnetisk strålning inom radiospektrat, och dessa signaler kräver speciella mikrovågskomponenter för förstärkning och filtrering. Mikrovågsfilter konstrueras ofta som stora och materialkrävande kavitetsfilter i metall, eftersom denna typ av filter har lägst förluster av de vanligt förekommande filtertyperna. Den stora materialåtgången är en uppenbar nackdel ur en hållbarhetssynpunkt, och storleken på filtret kan i vissa kompakta tillämpningar utgöra en begränsning av ett systems filtreringsförmåga. Detta examensarbete presenterar därmed två nya filter för Ku-bandet i integrerad hängande-substrat-stripline-teknologi, vars konstruktion kombinerar ett kompakt format med relativt låga energiförluster. Dessa filter utgör ett alternativ för framtida system som både kan tillåta miniatyrisering av system där filtrena är den begränsande faktorn storleksmässigt, såväl som att möjliggöra ökad filteringskapabilitet för redan kompakta system. Det första filtret, vars mål var maximal kompakthet hade förluster mellan -2.15 dB och -1.6 dB i passbandet, medan det andra filtret hade något större dimensioner och hade förluster mellan -2 dB och -1.1 dB. Då filtrena konstruerades i form av diskreta komponenter med koaxialdon, så är de angivna förlusterna till viss del orsakade av donen och dess omgivande struktur i filtrena. Förlusterna kan alltså vidare minimeras om filtrena i stället konstrueras som en del av ett integrerat system, direkt anslutna till en eller flera angränsande komponenter.
16

Development of lightweight and low-cost microwave components for remote-sensing applications

Donado Morcillo, Carlos Alberto 11 January 2012 (has links)
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 ºC to 200 ºC and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.
17

Development of lightweight and low-cost microwave components for remote-sensing applications

Donado Morcillo, Carlos Alberto 11 January 2013 (has links)
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 C to 200 C and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.

Page generated in 0.0589 seconds