• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 14
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions

Devaraj, Kiruthika 13 October 2011 (has links)
Accurate knowledge of the centimeter- and millimeter-wavelength absorptivity of ammonia is necessary for the interpretation of the emission spectra of the jovian planets. The objective of this research has been to advance the understanding of the centimeter- and millimeter-wavelength opacity spectra of ammonia under jovian conditions using a combination of laboratory measurements and theoretical formulations. As part of this research, over 1000 laboratory measurements of the 2-4 mm-wavelength properties of ammonia under simulated upper and middle tropospheric conditions of the jovian planets, and approximately 1200 laboratory measurements of the 5-20 cm-wavelength properties of ammonia under simulated deep tropospheric conditions of the jovian planets have been performed. Using these and pre-existing measurements, a consistent mathematical formalism has been developed to reconcile the centimeter- and millimeter-wavelength opacity spectra of ammonia. This formalism can be used to estimate the opacity of ammonia in a hydrogen/helium atmosphere in the centimeter-wavelength range at pressures up to 100 bar and temperatures in the 200 to 500 K range and in the millimeter-wavelength range at pressures up to 3 bar and temperatures in the 200 to 300 K range. In addition, a preliminary investigation of the influence of water vapor on the centimeter-wavelength ammonia absorptivity spectra has been conducted. This work addresses the areas of high-sensitivity centimeter- and millimeter-wavelength laboratory measurements, and planetary science, and contributes to the body of knowledge that provides clues into the origin of our solar system. The laboratory measurements and the model developed as part of this doctoral research work can be used for interpreting the emission spectra of jovian atmospheres obtained from ground-based and spacecraft-based observations. The results of the high-pressure ammonia opacity measurements will also be used to support the interpretation of the microwave radiometer (MWR) measurements on board the NASA Juno spacecraft at Jupiter.
92

Investigations of open-shell open-shell Van der Waals complexes

Economides, George January 2013 (has links)
The question posed in this work is how one would model and predict the rotational spectrum of open-shell open-shell van der Waals complexes. There are two secondary questions that arise: the nature of radical-radical interactions in such systems and the modelling of the large amplitude motion of the constituent molecules. Four different systems were studied in this work, each providing part of the answer to the main question. Starting with the large amplitude motion, there are two theoretical approaches that may be adopted: to either model the whole complex as a semi-rigid molecule, or to perform quantum dynamical calculations. We recorded and analysed the rotational spectrum (using Fourier transform microwave spectroscopy) of the molecule of tertiary butyl acetate (TBAc) which exhibits a high degree of internal rotation; and of the weakly-bound complex between a neon atom and a nitrogen dioxide molecule (Ne-NO2). We used the semi-rigid approach for TBAc and the quantum dynamical approach for Ne-NO2. We also explored the compatibility of these two approaches. Moreover, we were able to predict and analyse the fine and hyperfine structure of the Ne-NO2 spectrum using spherical tensor operator algebra and the results of our dynamics calculations. To explore the nature of the interactions in an radical-radical van der Waals complex we calculated the PESs of the possible states that the complex may be formed in, when an oxygen and a nitrogen monoxide molecule meet on a plane using a number of high level ab initio methods. Finally, our conclusions were tested and applied when we performed the angular quantum dynamics to predict the rotational spectrum of the complex between an oxygen and a nitrogen dioxide molecule, and account for the effect of nuclear spin statistics in that system.
93

High resolution microwave spectroscopic studies of hydrates of carboxylic acids

Ouyang, Bin January 2009 (has links)
This thesis studies the monohydrate, dihydrate and in some cases, trihydrate of five carboxylic acids, namely acetic acid, propanoic acid, T-difluoroacetic acid, Gdifluoroacetic acid and trifluoacetic acid using the technique of Fourier tranform microwave spectroscopy. The rotational and centrifugal distortion constants of these hydrates were determined with high accuracy. Ab initio calculations were also performed to locate the different conformational minima of the hydrates and to optimize their structures. Comparison of the ab initio predicted rotational and centrifugal distortion constants with the experimentally observed values allows us to determine the structures of the global minimum conformations of the various hydrates without ambiguity. Hydrogen-bonded ring structures are found to be the predominant feature in all observed hydrates. In this structural arrangement, all the hydrogen bonds formed are located in the same ring, and the cooperativity effect between them significantly strengthens each hydrogen bond, as suggested by the sharp increase of their binding energies in the larger hydrates. The fine and hyperfine splittings observed in the specrum were also successfully analyzed, which allows information on the dynamics of the intramolecular large amplitude tunnelling motions to be extracted explicitly. In the final part of this thesis, the equilibrium constants for the formation of monohydrates of the different carboxylic acids involved in this thesis, together with that of formic acid whose microwave spectrum has been analyzed elsewhere, were calculated to approximately derive their abundances under typical atmospheric conditions. It was found that about 2% of FMA, ACA and PPA will complex with one H2O molecule to form monohydrates in the low troposphere, while for TFA, the value increases to about 15%, mainly as a result of the larger binding energy of TFA–(H2O) due to fluorination on the end group.
94

Automatic Frequency Control of Microwave Radiation Sources

Payne, Bobby D. 08 1900 (has links)
Resonant cavity controlled klystron frequency stabilization circuits and quartz-crystal oscillator frequency stabilization circuits were investigated for reflex klystrons operating at frequencies in the X-band range. The crystal oscillator circuit employed achieved better than 2 parts in 10 in frequency stability. A test of the functional properties of the frequency standard was made using the Stark effect in molecules.
95

Theoretical And Spectroscopic Studies On Weakly Bound Complexes And Acetylene

Raghavendra, B 10 1900 (has links)
Atoms construct the molecules and molecules construct the material substances (with the exceptions as well, e.g.., metals, where atoms directly construct the material substances). Intermolecular interactions play an important role in most of the branches of sciences, ranging from material sciences to biological sciences. Van der Waals interactions are weak intermolecular interactions while hydrogen bonding varies in strength from weak to strong (1 to 40 kcal/mol). The present work focuses on applying some theoretical methods (ab initio and Atoms in Molecules theory) on these interactions to differentiate them with physically meaningful parameters such as hydrogen bond radii and atoms in molecules theory parameters. 1)Defining and calculating H-bond radii have been done using atoms in molecules theory approach which can explain ruling out the presence or absence of an H-bond in an intermolecular interaction. 2) A blue-shift of 200 cm-1 for a weakly bound complex is unprecedented. Our studies on weakly bound complexes showed the blue-shift of 200 cm-1 for H3C•••CIF and shift has been found to be purely from the mixing of normal modes and not because of an interaction. 3)Methane, a symmetric top molecule can act both as H-bond acceptor and donor. The present work shows that methane is rather a better H-bond acceptor than a donor and all the calculated parameters are in favor of this description. 4) Microwave spectrometer is an ultimate tool (at least at present) for structural characterization of the weakly bound complexes accurately. The rotational spectrum of the weakly bound isotopomer weakly bound complexes accurately. The rotational spectrum of the weakly bound isotopomer 13CC5H6•••Ar, which is a symmetric top and gives only “B” rotational constant. Moreover, the A rotational constant of the complex is the same as the rotational constant for 13CC5H6, which has no dipole moment. C2H2 molecule is an astrophysically important molecule as it is present in asymptotic giant branch and T-type stars (Teff<3000K). Due to its various infrared active vibrational modes, C2H2 is one of the most important sources in cool stars. The production of C2H2 infrared spectroscopic data at high temperature is therefore essential to trace back physical characteristics of these objects and to model the radiative transfer in their envelope. The databases such as “HITRAN”, do not have enough data available for stimulating high temperature spectra. Keeping all these objectives in mind, high temperature emission spectrum of acetylene has been recorded around 3µm region of acetylene.
96

Atomes de Rydberg en interaction : des nuages denses d'atomes de Rydberg à la simulation quantique avec des atomes circulaires / Interacting Rydberg atoms : from dense clouds of Rydberg atoms to quantum simulation with circular atoms

Cantat-Moltrecht, Tigrane 11 January 2018 (has links)
Les systèmes quantiques à N corps en interaction sont au cœur des problèmes actuels de la recherche en physique quantique. La compréhension de tels systèmes est un enjeu crucial pour le développement des connaissances en physique de la matière condensée. De nombreux efforts de recherche visent à la construction d'un « simulateur quantique » : une plateforme permettant de modéliser, grâce à un système quantique bien contrôlé, un système quantique dont l'accès expérimental est difficile. Les fortes interactions dipolaires entre atomes de Rydberg représentent un objet d'étude choix pour ce type de problème. Nous présentons dans le présent manuscrit une étude des conditions d'excitation d'un nuage dense d'atomes de Rydberg en interaction, permise par le dispositif expérimental dont nous disposons, qui mêle les techniques de piégeage et de refroidissement d’atomes sur puce avec les techniques de manipulation des niveaux de Rydberg. Les résultats de cette étude nous permettent de formuler une proposition expérimentale complète de développement d'un simulateur quantique fondé sur le piégeage d'atomes de Rydberg circulaires. Le simulateur que nous proposons est très prometteur, grâce à sa flexibilité et aux longs temps de simulation qu’il permettrait. Nous terminons ce manuscrit par la description détaillée de la première étape sur le chemin vers ce simulateur : l'excitation d’atomes de Rydberg circulaires sur puce. / Interacting many-body quantum systems are at the heart of contemporary research in quantum physics. The understanding of such systems is crucial to the development of condensed-matter physics. Many research efforts aim at building a "quantum simulator": a platform which allows to model a hard-to-access quantum system with a more controllable one. Ensembles of Rydberg atoms, thanks to their strong dipolar interactions, make for an excellent system to study many-body quantum physics. We present here a study of the excitation of a dense cloud of interacting Rydberg atoms. This study was conducted on an experimental setup mixing on-chip cold atoms techniques with Rydberg atoms manipulation techniques. The result of this study leads us to make a full-fledged proposal for the realisation of a quantum simulator, based on trapped circular Rydberg atoms. The proposed simulator is particularly promising due to its flexibility and to the long simulation times for which it would allow. We conclude this manuscript with a detailed description of the first experimental step towards building such a simulator: the on-chip excitation of circular Rydberg atoms.
97

Rotational Spectroscopic And Ab Initio Studies On The Weakly Bound Complexes Containing 0-H...π And S-H...π Interactions

Goswami, Mausumi 07 1900 (has links)
Work reported in this thesis mainly comprises of the assignments and analysis of the rotational spectra and structures of three weakly bound complexes: C2H4•••H2S, C6H5CCH•••H2O and C6H5CCH•••H2S. All the data have been collected using a home built Pulsed Nozzle Fourier Transform Microwave Spectrometer. Apart from this, the thesis also deals with a criterion of classifying a weakly bound complex to a ‘hydrogen-bonded’ one. First chapter of the thesis gives a brief intermolecular interactions and molecular clusters of π system. It also briefly touches on the structural determination by rotational spectroscopy and the basic information one can gain from the rotational spectrum. Second chapter of the thesis gives a brief introduction to the experimental and theoretical methodology. It also gives a description of the software used in the FTMW spectrometer which was rebuilt using Labview 7.1. Third chapter of the thesis deals with the rotational spectra and structure of eight isotopologoues of C2H4•••H2S complex. The lines are split into four components for the parent isotopologue due to the presence of large amplitude motion. The smaller splitting is 0.14 MHz and the higher splitting is 1.67 MHz in (B+C)/2 for the parent isotopologue. Spectral splitting pattern of the isotopologues confirmed that smaller splitting is due to the rotation of ethylene about its C-C bond axis along with the contraction of S-H bond whereas the larger motion arises due to the interchange of equivalent hydrogens of H2S in the complex. A detailed spectral analysis and ab initio calculation for this system have been described in chapter III. The fourth chapter of the thesis describes the rotational spectroscopic studies of five isotopologues of C6H5CCH•••H2O complex. Rotational spectra unequivocally confirm the structure of the complex to be a one where H2O is donating one of its hydrogen to the acetylenic π cloud forming a O-H••• π bond whereas the ring ortho C-H bond forms C-H•••O bond with the water oxygen. For theparent isotopomer the lines are split into two components due to the rotation of H2O about its C2 symmetric axis. The fifth chapter of thesis describes the rotational spectroscopic and ab initio studies of five isotopologues of C6H5CCH•••H2S complex. Rotational spectra indicate the structure to be the one where H2S is sitting on the top of the phenyl ring and shifted towards the acetylenic group. The sixth chapter of the thesis describes a criterion for calling a complex to be hydrogen bonded based on the dynamic structure rather than the static structure of the complex. The question asked is if the anisotropy of the interaction is strong enough to hold the ‘hydrogen bond’ when one takes dynamics into account. The proposed criterion is that the zero point energy of the motion which takes the hydrogen away from the acceptor should be much less than the barrier height of the respective motion supporting at least one bound level below the barrier. Ab initio calculations have been done on four model systems Ar2•••H2O, Ar2•••H2S, C2H4••• H2O and C2H4••• H2S to emphasize this criterion.
98

Microwave Spectroscopic and Atoms in Molecules Theoretical Investigations on Weakly Bound Complexes : From Hydrogen Bond to 'Carbon Bond'

Devendra Mani, * January 2013 (has links) (PDF)
Weak intermolecular interactions have very strong impact on the structures and properties of life giving molecules like H2O, DNA, RNA etc. These interactions are responsible for many biological phenomena. The directional preference of some of these interactions is used for designing different synthetic approaches in the supramolecular chemistry. The work reported in this Thesis comprises of investigations of weak intermolecular interactions in gas phase using home-built Pulsed Nozzle Fourier Transform Microwave (PN-FTMW) spectrometer as an experimental tool and ab-initio and Atoms in Molecules (AIM) theory as theoretical tools. The spectrometer which is coupled with a pulsed nozzle is used to record pure rotational spectra of the molecular clusters in a jet cooled molecular beam. In the molecular beam molecules/complexes are free from interactions with other molecules/complexes and thus, spectroscopy in the molecular beams provides information about the 'isolated' molecule/complex under investigation. The rotational spectra of the molecules/complexes in the molecular beam provide their geometry in the ground vibrational states. These experimental geometries can be used to test the performance and accuracy of theoretical models like ab-initio theory, when applied to the weakly bound complexes. Further the AIM theory can be used to gain insights into the nature and strength of the intermolecular interactions present in the system under investigation. Chapter I of this Thesis gives a brief introduction of intermolecular interactions. Other than hydrogen bonding, which is considered as the most important intermolecular interaction, many other intermolecular interactions involving different atoms have been observed in past few decades. The chapter summarizes all these interactions. The chapter also gives a brief introduction to the experimental and theoretical methods used to probe these interactions. In Chapter II, the experimental and theoretical methods used in this work are summarized. Details of our home-built PN-FTMW spectrometer are given in this chapter. The chapter also discusses briefly the theoretical methods like ab-initio, AIM and Natural bond orbital (NBO) analysis. We have made few changes in the mode of control of one of our delay generators which have also been described. Chapter III and Chapter V of this Thesis are dedicated to the propargyl alcohol complexes. Propargyl alcohol (PA) is a molecule of astrophysical interest. It is also important in combustion chemistry since propargyl radical is considered as the precursor in soot formation. Moreover, PA is a multifunctional molecule, having a hydroxyl (-OH) and an acetylenic (-C≡C-H) group. Both of the groups can individually act as hydrogen bond acceptor as well as donor and thus PA provides an exciting possibility of studying many different types of weak interactions. Due to internal motion of -OH group, PA monomer can exist in gauche as well as trans form. However, rotational spectra of PA-monomer show the presence of only gauche conformer. In Chapter III, rotational spectra of Ar•••PA complex are discussed. The pure rotational spectra of the parent Ar•••PA complex and its two deuterated isotopologues, Ar•••PA-D (OD species) and Ar•••PA-D (CD species), could be observed and fitted within experimental uncertainty. The structural fitting confirmed a structure in which PA is present as gauche conformer and argon interacts with both the O-H group and the acetylenic group leading to Ar•••H-O and Ar•••π interactions respectively. Presence of these interactions was further confirmed by AIM theoretical analysis. In all the three isotopologues c-type rotational transitions showed significant splitting. Splitting patterns in the three isotopologues suggest that it originates mainly due to the large amplitude motion of the hydroxyl group and the motion is weakly coupled with the carbon chain bending motion. No evidence for the complex with trans conformer of PA was found. Although, we could not observe Ar•••trans-PA complex experimentally, we decided to perform ab-initio and AIM theoretical calculations on this complex as well. AIM calculations suggested the presence of Ar•••H-O and a unique Ar•••C interaction in this complex which was later found to be present in the Ar•••methanol complex as well. This prompted us to explore different possible interactions in methanol, other than the well known O-H•••O hydrogen bonding interactions, and eventually led us to an interesting interaction which we termed as carbon bond. Chapter IV discusses carbon bonding interaction in different complexes. Electrostatic potential (ESP) calculations show that tetrahedral face of methane is electron-rich and thus can act as hydrogen/halogen bond acceptor. This has already been observed in many complexes, e.g. CH4•••H2O/HF/HCl/ClF etc., both experimentally and theoretically. However, substitution of one of the hydrogens of methane with -OH leads to complete reversal of the properties of the CH3 tetrahedral face and this face in methanol is electron-deficient. We found that CH3 face in methanol interacts with electron rich sites of HnY molecules and leads to the formation of complexes stabilized by Y•••C-X interactions. This interaction was also found to be present in the complexes of many different CH3X (X=OH/F/Cl/Br/NO2/NF2 etc.) molecules. AIM, NBO and C-X frequency shift analyses suggest that this interaction could be termed as "carbon bond". The carbon bonding interactions could be important in understanding hydrophobic interactions and thus could play an important role in biological phenomena like protein folding. The carbon bonding interaction could also play a significant role in the stabilization of the transition state in SN2 reactions. In Chapter V of this Thesis rotational spectra of propargyl alcohol dimer are discussed. Rotational spectra of the parent dimer and its three deuterated (O-D) isotopologues (two mono-substituted and one bi-substituted) could be recorded and fitted within experimental uncertainty. The fitted rotational constants are close to one of the ab-initio predicted structure. In the dimer also propargyl alcohol exists in the gauche form. Atoms in molecules analysis suggests that the experimentally observed dimer is bound by O-H•••O, O-H•••π and C-H•••π interactions. Chapter VI of the thesis explores the 'electrophore concept'. To observe the rotational spectra of any species and determine its rotational constant by microwave spectroscopy, the species should have a permanent dipole moment. Can we obtain rotational constants of a species having no dipole moment via microwave spectroscopy? Electrophore concept can be used for this purpose. An electrophore is an atom or molecule which could combine with another molecule having no dipole moment thereby forming a complex with a dipole moment, e.g. Argon atom is an electrophore in Ar•••C6H6 complex. The microwave spectra of Ar•••13CC5H6 and Ar•••C6H5D complexes were recorded and fitted. The A rotational constant of these complexes was found to be equal to the C rotational constant of 13CC5H6 and C6H5D molecules respectively and thus we could determine the C rotational constant of microwave 'inactive' 13CC5H6. This concept could be used to obtain the rotational spectra of parallel displaced benzene-dimer if it exists. We recently showed that the square pyramidal Fe(CO)5 can act as hydrogen bond acceptor. Appendix I summarizes the extension of this work and discusses interactions of trigonal bipyramidal Fe(CO)5 with HF, HCl, HBr and ClF. Our initial attempts on generating a chirped pulse to be used in a new broadband spectrometer are summarized in Appendix II. Preliminary investigations on the propargyl•••water complex are summarized in Appendix III.
99

Microwave Spectroscopic and Theoretical Investigations on Inter/Intra Molecular Bonding

Shahi, Abhishek January 2014 (has links) (PDF)
The importance of weak interactions between molecules to life and all parts of science and engineering is unquestionable and there have been an enormous interest in such interactions. Among all the weak interactions, hydrogen bonding is the most popular and it has enjoyed the most attention of the scientific community. Halogen bonding is gaining more popularity in the recent time, as its importance to biological molecules and crystal engineering has been recognized. In this work, a Pulsed Nozzle Fourier Transform Microwave spectrometer has been used to study the rotational spectra of molecules and hydrogen bonded complexes. Structural information is obtained from the rotational spectra. Ab initio electronic structure, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theoretical methods have been used to characterize the weak intermolecular interactions, including hydrogen bonding, halogen bonding and lithium bonding. In Chapter I, introduction to weak interaction is discussed. A brief introduction of different experimental and theoretical methods is presented. Chapter II discusses in detail about the different methods used to investigate weak interaction, both experimentally and theoretically, in this work. In our lab, we use Pulsed Nozzle Fourier Transform Microwave spectrometer to determine the complexes spectra and structures. We generate MW radiation with the help of electronic devices and use Balle-Flygare cavity where molecular interaction takes place. We inject the sample inside the cavity in form of supersonic molecular beam through a pulsed nozzle, parallel to MW radiation. The detailed instrumental discussion about MW spectrometer has been done in this Chapter. We extensively use theoretical methods to probe weak bonding and characterize them. Ab initio and DFT calculations are used to optimize the structure of the complexes and predict their rotational spectra. Atoms in Molecules theory and Natural Bond Orbital theory are then used with the ab initio wave functions to understand the weak interactions in depth. Discussion about these methods and software used for the analysis will also be discussed. In Chapter III, rotational spectrum of Hexafluoroisopropanol (HFIP) monomer is presented. HFIP is an interesting molecule as it offers many possibilities as hydrogen bond donor and acceptor. It has the OH group which can both accept/donate a hydrogen bond and in addition it has a very acidic CH group. It is the only solvent that can dissolve polyethylene terephthalate, a normally difficult-to-dissolve polymer, and clearly it has unique interactions with this difficult to solve polymer. We have recorded and fitted rotational spectra of five different isotopologues of HFIP which helped us in determining its accurate structure. Though, it can exist in synclinical and antiperiplanar conformers, only the later has been detected in our molecular beam spectrometer. This happens to be the global minimum structure of HFIP. Combination of experimental observations and ab initio calculations provided many evidences which confirmed the presence of antiperiplanar conformer, experimentally. Since, the rotational constants for both conformers were very close, it was always challenging to pick up one conformer as experimentally observed structure. A prototype molecule, hexafluoroisobutene (HFIB) shows doubling of rotational transitions due to tunnelling/counter rotation of the two CF3 groups through a small barrier. Interestingly, such motion has no barrier in HFIP and hence no splitting in transitions was observed. Potential energy surface calculated for counter-rotation of the two CF3 groups is consistent with this observation. This barrier is different from eclipsed-staggered exchange barrier, observed by 60 counter rotation of both terminal CF3 groups, for which the barrier height is very large and tunnelling cannot occur. The origin/lack of the small barrier in HFIB/HFIP has been explored using Natural Bond Orbital (NBO) method which helped in understanding intramolecular bonding in these molecules. Along with HFIB, other prototype molecules were also considered for the analysis e.g. hexafluoroacetone, hexafluoroacetone imine, hexafluoroisobutane, hexafluoroisopropylamine. In the last section of this Chapter, we have discussed the generalized behaviour of molecules which have CF3-C-CF3 groups. In Chapter IV, rotational spectrum of HFIP•••H2O complex is presented. Aqueous solution of HFIP stabilizes α-helical structure of protein, a unique property of this solvent. The main objective of this Chapter is understanding the interaction between HFIP and H2O. Microwave spectrum of HFIP•••H2O was predicted and recorded. Three isotopologues were investigated. Though, this complex could in principle have several structural conformers, detailed ab initio calculations predicted two conformers and only one was observed. Though, the rotational constants for both structures were somewhat similar, lack of a dipole transitions, larger intensity of b-dipole transitions over c-dipole transitions and isotopic substitution analysis positively confirm the structure in which HFIP acts as the hydrogen bond donor. The linear O-H•••O hydrogen bond in HFIP-H2O complex is significantly stronger than that in water dimer with the H•••O distance of 1.8 Å. The other structure for this complex, not found in experiment is cyclic with both C-H•••O and O-H•••O hydrogen bonds, both of which are bent with H•••O distances in the range 2.2-2.3 Å. Both AIM and NBO calculations have been used to characterize the hydrogen bond in this complex. In Chapter V, a comprehensive study on hydrogen bonding, chlorine bonding and lithium bonding have been done. A typical hydrogen bonded complex can be represented as A•••H-D, where A is the acceptor unit and H-D is the hydrogen bond donor unit. Many examples are known in literature, both experimentally and theoretically, in which the A-H-D bond angles are not linear. Deviation from linearity also results in the increase in A•••H bond lengths, as noted above for the two structures of HFIP•••H2O complex. Though this has been known for long, the distance between A and D being less than the sum of their van der Waals ‘radii’ is still used as a criterion for hydrogen bonding by many. Our group has recently shown the inappropriateness of van der Waals ‘radii’ and defined hydrogen bond ‘radii’ for various donors, DH and A. A strong correlation of DH hydrogen bond ‘radii’ with the dipole moment was noted. In this Chapter, we explored in detail the angular dependence of hydrogen bond ‘radii’. Electron density topology around DH (D = F, Cl and OH) has been analyzed in detail and shown to be elliptical. For these molecules, the two constants for H atom treated as an ellipse have been determined. It is hoped that these two constants will be used widely in analyzing and interpreting H•••A distances, as a function of D-H•••A angles, rather than one ‘radius’ for H and acceptor atoms. In Chapter VI, Detailed analysis and comparisons among hydrogen bond, chlorine bond and lithium bond, have been done. Hydrogen can be placed in group 1 as well as group 17 of the periodic table. Naturally, lithium bonding and halogen bonding have been proposed and investigated. There have been numerous investigations on the nature of hydrogen bonding and the physical forces contributing to it. In this Chapter, a total of one hundred complexes having H/Cl/Li bonding have been investigated using ab initio, AIM and NBO theoretical methods. Various criteria proposed in the literature have been examined. A new criterion has been proposed for the characterization of closed shell (ionic/electrostatic) and open shell (covalent) interactions. It has been well known that the D-H bond weakens on the D-H•••A hydrogen bond formation and H•••A bond acquires a fractional covalency. This Chapter shows that for D-Li•••A complexes, the ionicity in D-Li is reduced as the Li•••A bond is formed This comprehensive investigation of H/Cl/Li bonding has led us to propose a conservation of bond order, considering both ionic and covalent contributions to both D-X and X•••A bonds, where DX is the X-bond donor and A is the acceptor with X = H/Cl/Li. Hydrogen bond is well understood and its definition has been recently revised [Arunan et al. Pure Appl. Chem., Vol. 83, pp. 1619–1636, 2011]. It states “The X–H•••Y hydrogen bond angle tends toward 180° and should preferably be above 110°”. Using AIM theory and other methods, this fact is examined and presented in Appendix A. In second part of appendix A, a discussion about calling H3¯ complex as trihydrogen bond and its comparison with FHF¯ complex, is presented. In Appendix B, there is tentative prediction and discussion about the HFIP dimer. Condense phase studies show that HFIP have strong aggregation power to form dimer, trimer etc. During, HFIP monomer study, we have unassigned lines which are suspected to be from HFIP dimer. These are tabulated in the Appendix B as well.
100

Methyl Internal Rotation Probed by Rotational Spectroscopy

Gurusinghe, Ranil Malaka 02 November 2016 (has links)
No description available.

Page generated in 0.1333 seconds