Spelling suggestions: "subject:"min water"" "subject:"mice water""
71 |
Die Verwahrung der Bergwerke im Döhlener Becken durch die Wismut GmbH – Eine Evaluierung des GrubenwasseranstiegsprozessesGoerke-Mallet, Peter, Westermann, Sebastian, Melchers, Christian January 2016 (has links)
Vor den Toren der Stadt Dresden wurde im Döhlener Becken ohne Unterbrechung seit dem 16. Jahrhundert bis zum Jahr 1989 Steinkohle im Tiefbau gewonnen. In den Jahren von 1945 bis 1989 wurde mit Unterbrechungen auch uranhaltige Steinkohle abgebaut. Die Region wird von der Weißeritz durchflossen. Westlich der Weißeritz befindet sich das Grubenfeld Zauckerode. Auf der östlichen Seite spricht man vom Burgker Revier.
Bereits in den 1980er Jahren wurde an Konzepten zur Verwahrung der Bergwerke gearbeitet. Ein zentrales Element der Verwahrung der bergbaulichen Hinterlassenschaften im Bereich westlich und östlich der Weißeritz war die dauerhafte Ableitung der Grubenwässer über den 6 km langen Tiefen Elbstolln in die Elbe.
Zwischen 1991 und 2014 unternahm die Wismut GmbH erhebliche Anstrengungen zur umweltverträglichen Verwahrung der Bergbaubetriebe. So wurde der Versuch unternommen, den Grubenwasseranstieg im östlichen Revier auf einem Niveau oberhalb des Tiefen Elbstollns nahe der Tagesoberfläche zu stabilisieren. Die dabei gewonnenen Erfahrungen führten zum Rückgriff auf „Plan B“. Damit ist die Auffahrung des sogenannten Wismut-Stolln gemeint, der den hydraulischen Anschluss der Grubenbetriebe östlich der Weißeritz an das untertägige System westlich der Weißeritz und damit an den Tiefen Elbstolln realisiert.
Im Zeitraum der Verwahrung hat die Wismut GmbH im Döhlener Becken insbesondere bei der Anhebung des Grubenwasser-Niveaus eine Vielzahl wertvoller Erfahrungen gesammelt, die von wesentlicher Bedeutung sind. Dies gilt auch für die Abschlussarbeiten an Schächten und Bergehalden. Mit der Fertigstellung der Auffahrung des Wismut-Stollns ist das Revier erfolgreich und umweltverträglich verwahrt.
Das Forschungszentrum Nachbergbau an der Technischen Hochschule Georg Agricola zu Bochum ist von der Wismut GmbH beauftragt worden, den Grubenwasseranstiegsprozess zu evaluieren. Ziel ist es, den Lernprozess im Zuge des Grubenwasseranstiegs im Döhlener Becken in seinen wissenschaftlichen Aspekten zu bewerten und die Erkenntnisse für zukünftige Projekte verfügbar zu machen. Die Ergebnisse dieser Arbeiten sind zentraler Bestandteil des Vortrages. / In the southwest of Dresden within the area of the „Doehlen basin“ hard coal was continuously mined from the 16th century until 1989.
The long-term drainage of mine water along the 6 km long deep drainage adit „Tiefer Elbstolln“ into the receiving river Elbe is the central issue of the mine closure process.
During this process the Wismut GmbH gained a multitude of valuable experience, especially concerning the rising mine water table.
|
72 |
The application of high capacity ion exchange absorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metals from secondary co-disposed process waters.Hendricks, Nicolette Rebecca January 2005 (has links)
The objective of this study was to investigate the feasibility of the application of low cost high capacity inorganic ion exchange material, synthesized form collected fly ash and acid mine drainage solid residues, for the decontamination of secondary co-disposal process waters, with emphasis on investigating the processes governing the solid/solution interface.
|
73 |
Penetrability and Hydraulic Conductivity of Dilute Sulfuric Acid Solutions in Selected Arizona SoilsMiyamoto, S., Ryan, J., Bohn, H. L. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / Measurements of penetrability and hydraulic conductivity in calcareous soils treated with a dilute sulfuric acid solution showed a severe decrease in conductivity with increasing concentrations over 1000 ppm. A slight decrease in penetrability was observed. Carbon dioxide evolution appeared to be responsible for flow reduction and temporary cessation at 10,000 ppm and 20,000 ppm. In sodic soils penetrability and conductivity increased markedly with sulfuric acid concentrations between 1,000 and 10,000 ppm. For a neutral soil, penetrability decreased with increasing sulfuric acid concentrations, and the stable conductivity for 500 to 5,000 ppm was higher than for water alone. The findings suggest that disposal of sulfuric acid concentrations greater than 1,000 ppm will result in plugging by carbon dioxide. In sodic soils the possibility exists of using sulfuric acid solutions for reclaiming salt and sodium-affected soils.
|
74 |
The potential for groundwater contamination arising from a lead/zinc mine tailings impoundment.Vergunst, Thomas Maarten. January 2006 (has links)
The mining industry produces vast quantities of overburden and mill tailings. In many instances the disposal of these wastes on the Earth's surface have caused local, and occasionally even regional, water resources to become contaminated. Contamination typically arises from the oxidation of metal sulfide minerals contained within these wastes. Upon oxidation these minerals release sulfate, their associated metal cations and acidity into solution. This study investigated the potential for groundwater contamination arising from a Pb/Zn tailings impoundment in the North West Province of South Africa (Pering Mine). The tailings is composed predominantly of dolomite, which imparts to the material an alkaline pH and a high acid buffering capacity. Acid-base accounting (ABA) established that the capacity of the tailings to buffer acidity surpasses any acid producing potential that could arise from pyrite (FeS2), galena (PbS) and sphalerite (ZnS) oxidation. These minerals account for about 3 to 6% of the tailings by mass. Total elemental analysis (XRF) showed that the material has high total concentrations of Fe (19083 mg kg-I), Zn (5481 mg kg-I), Pb (398 mg kg-I), S (15400 mg kg-I), Al (9152 mg kg-I) and Mn (29102 mg kg-I). Only a very small fraction of this, however, was soluble under saturated conditions. An estimation of potentially available concentrations, using the DTPA extraction method, indicated that high concentrations of Zn (1056 mg kg-I), and moderate concentrations of Pb (27.3 mg kg-I) and Cu (6.01 mg kg-I) could potentially be available to cause contamination. A number of leaching experiments were undertaken to accurately quantify the release of elements from the tailings material. These experiments were aimed at determining the potential for groundwater contamination and also provided a means whereby the long-term release of contaminants could be modelled using the convection-dispersion equation for solute transport. Four leaching treatments were investigated. Two consisted of using distilled water under intermittent and continuous flow, while a third used intermittent flow of deoxygenated distilled water to assess leaching under conditions of reduced oxygen. The.mobilisation of potential contaminants under a worst case scenario was assessed by means of leaching with an acetic acid solution at pH 2.88 (after the US Environmental Protection Agency's toxicity characteristic leaching procedure). The acid buffering potential of the tailings was considerable. Even after 8 months of weekly leaching with 1 pore volume of acetic acid solution the pH of the effluent was maintained above pH 5.90. The protracted acidity caused very high concentrations of Pb, Zn, Mu, Ca, Mg, Hg and S to be released into solution. Leaching the tailings with distilled water also caused the effluent to have noticeable traces of contamination, most importantly from S, Mg, Mu and Zn. In many instances concentrations significantly exceeded guideline values for South African drinking water. Modelling solute transport with the convectiondispersion equation predicted that sol- and Mu contamination could persist for a very long period of time. (±700 years under continuous saturated leaching), while Mg and Zn concentrations would most likely exceed recommended limits for a much shorter period of time (±300 years under the same conditions). In light of the various column leaching experiments it was concluded that seepage from the Pering tailings impoundment could cause groundwater contamination. A drill-rig and coring system were used to collect both tailings and pore-water samples from eight boreholes spread out across the tailings impoundment. These investigations showed that most of the impoundment was aerobic (Eh ranged from +323 to +454 mY) and alkaline (pH 8.0 to 9.5). This chemical environment favours sulfide oxidation and as a consequence high concentrations of S have been released into the pore-water of the impoundment (S concentrations ranged from 211 to 1221 mg r l ). The acidity released as a by-product of sulfide oxidation was being buffered by dolomite dissolution, which in turn was releasing high concentrations of Mg (175 to 917 mg r l ) and Ca (62.6 to 247 mg r l ) into solution. Metal concentrations in the pore-water were low as a result of the strong metal sorbing capacity of the tailings and possible secondary precipitation. The only metal which significantly exceeded recommended limits throughout the impoundment was Hg (concentrations were between 100 and 6000 times the recommended limit of 0.001 mg r l ). Under the current geochemical conditions it is expected that Hg, S and Mg will likely pose the greatest threat to groundwater. The main concerns associated with mine tailings are that of mine drainage and dust blow off..In order to eradicate the latter problem, the tailings impoundment at Pering Mine was covered with a layer of rocks. Modelling the water balance of the impoundment using the computer model HYDRUS-2D showed that the rock cladding has potentially increased the volume of drainage water seeping from the impoundment. In light of the leaching experiments and field work, which proved that water passing through the tailings became enriched with various potentially toxic elements, it is expected that the problem of groundwater contamination around Pering Mine has been further exacerbated by the rock cladding. It was therefore concluded that there would be a strong likelihood of groundwater contamination in the vicinity of the mine. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
|
75 |
The application of high capacity ion exchange absorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metals from secondary co-disposed process waters.Hendricks, Nicolette Rebecca January 2005 (has links)
The objective of this study was to investigate the feasibility of the application of low cost high capacity inorganic ion exchange material, synthesized form collected fly ash and acid mine drainage solid residues, for the decontamination of secondary co-disposal process waters, with emphasis on investigating the processes governing the solid/solution interface.
|
76 |
Erarbeitung einer Methodik zur Reduzierung der Sauerwasserbildung durch gezielte Abraumverkippung unter Beachtung geogener Potentiale / Development of a methodology for reducing acid water formation through specific overburden tilting under consideration of geogenic potentialsSimon, André 05 April 2016 (has links) (PDF)
Mit dem Grundwasserwiederanstieg in Braunkohleabraumkippen werden die aus der Pyritverwitterung resultierenden Stoffausträge an Sulfat-, Eisen-, Schwermetall- und H+-Ionen gelöst. Im Rahmen dieser Dissertation wurde eine Methodik entwickelt, mit deren Hilfe Problembereiche ausgehalten und somit Maßnahmen im aktiven mitteldeutschen Tagebaubetrieb ergriffen werden können, um die zukünftige Beeinflussung der umgebenden Grund- und Oberflächenwasserkörper zu minimieren. An Vorfeldsedimenten konnten in Feld-eluaten, Stoßbeprobungen und Verwitterungsversuchen geochemische Eigenschaften ermittelt werden. In resultierenden Pufferungsversuchen aus karbonathaltigen Geschiebe-mergeln und Hauptaciditätsträgern konnte eine langfristige Minderung der Aciditätswirkung nachgewiesen werden und ein adaptierter Regelkippenaufbau mit laminaren, alterierenden Sichtaufbau begründet werden. In umliegenden Altkippengrundwässern sind Pufferung und Sulfatreduktion als Wiederfestlegungsprozesse der AMD-Problemstoffe belegt worden. / For lignite mining extensive overburden masses have to be moved. Due to the ventilation of the overburden by atmospheric oxygen, there is a weathering of mostly tertiary sulfides. The rebound of groundwater in future tippings dissolves sulfate, iron, heavy metal and H+ ions, resulting from the pyrite weathering. The partial mobilization of overburden sulfides are opposed to hydrogeochemical buffer reactions e.g. the buffering by carbonates as the first step of buffering.
Therefore, there are the questions to the mining operators of the measures that can be taken to minimize the geochemical influence of the surrounding ground and surface water bodies.
Object of this PhD-thesis is to lead a methodology that helps to characterize the future tilting substrates to find technological and strategic measures for minimizing the acid water formation in the active open pit operation.
In Field eluates and weathering tests in the laboratory and in the field, sediments from dry drill holes in the forefront of open pits “Schleenhain” and “Peres” it could be shown that the geological facies formation of sediments has a decisive influence on geochemical characteristics.
As the main acidifying sediment the tertiary aquifer number 2 (lying part) and number 3 can be identified with their high sulfur contents. With increasing time of oxygen exposure sulfate, iron, heavy metal and H + ions released massively. Furthermore, it appears that carbonate buffer essentially are available as glacial till only in cohesive Quaternary.
With the resulting buffering experiments from glacial till and the most acidic aquifer sediments a long-term retention of iron, heavy metal and H + - ion and a reduction of sulfate release can be shown, if there is a share of at least 40% glacial till to the lying aquifer number 2 sediments or 20% glacial till to the aquifer number 3.
The groundwater quality monitoring of unstructured resaturated old dumps near to the active open pits is comparable to a field test. In addition to weathering zones with high levels of pollutants in the presence of carbonates, buffering processes and sulfate reduction with precipitation of problematic substances in secondary mineral phases can be detected.
Blending the research results of geological and geochemical data, an important, in principle selectively recoverable, buffer potential already exists. The determined mixing ratio from 80-60 mass-% acidic sediments to 20-40 mass-% buffering sediment from the buffering experiments can be realized in tilting. In the open pit “Schleenhain” the missing buffering material can be compensated by mass offset from the open pit “Peres”. With the use of the already existing equipment, it is possible to establish a laminar, alternately tipping body with good geochemical and geotechnical conditions.
|
77 |
The Effects on Water Quality by Mining Activity in the Miami, Arizona RegionYoung, D. W., Clark, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Intensive strip and leach mining activity within a confined region usually causes environmental impacts both on the land and on water quality. Adverse water quality effects could be realized long after any mining activity has ceased due to the continuous leaching by precipitation of contaminants from spoils piles and leach dumps. The Miami, Arizona region is unique in its surface and subsurface hydrology. Two unconnected aquifers underlay the region with both serving as domestic (private and municipal) and industrial (mining) supply sources. The shallow floodplain alluvial aquifer is hydraulically connected to surface drainage from mine tailings and leach dumps. Several wells drawing from this aquifer have been abandoned as a municipal supply source due to severe water quality degradation. Water quality in these wells varies directly with precipitation indicating a correlation between surface drainage over and through tailings and leach piles. Expansion of spoils dumps into natural recharge pathways of the deeper Gila Conglomerate aquifer has raised concern that this aquifer may also be subjected to a long term influx of mine pollutants. Questions have also been raised concerning the potential effects of a proposed in situ leaching operation on the water quality of the conglomerate aquifer.
|
78 |
Water Quality of Runoff from Surface Mined Lands in Northern ArizonaKempf, J., Leonhart, L., Fogel, M., Duckstein, L. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Surface mining of coal in the western U.S. can cause problems of increased salinity and heavy metal contamination in runoff along with a lack of enough rainfall to sustain plant growth for reclamation. To facilitate the planning of reclamation efforts in such areas results are described of a water quality sampling experiment on the ponds and runoff at the University of Arizona Experimental Watershed on Black Mesa in northern Arizona. A systems theoretic framework is employed to model the watershed and the results of a computer simulation based on this model is used to indicate that salinity buildup could be expected over time, given a minimal change in watershed configuration, with possible development of fluoride contamination being of particular concern. Water quality tests of the pond water and runoff on Black Mesa indicated that the water is within Federal standards for drinking and irrigation, except for sodium and fluoride. It is suggested that if it is economically desirable, the collection of more data on the ponds could be used to develop a simulation model of pond subsystems along the lines of the methodology outlined in this analysis.
|
79 |
Impact of irrigation with gypsiferous mine water on the water resources of parts of the upper Olifants basin.Idowu, Olufemi Abiola. January 2007 (has links)
The generation of large quantities of mine wastewater in South African coal mines and the needs for a cost effective, as well as an environmentally sustainable manner of mine water disposal, have fostered interests in the possibility of utilizing mine water for irrigation. Such a possibility will not only provide a cost-effective method of minimizing excess mine drainage, as treatment using physical, chemical and biological methods can be prohibitively expensive, but will also stabilize the dry-land crop production by enhancing dry season farming. Considering the arid to semi-arid climate of South Africa, the utilization of mine water for irrigation will also boost the beneficial exploitation of the available water resources and relieve the increasing pressure on, and the competition for, dwindling amounts of good quality water by the various sectors of the economy. The disposal of excess gypsiferous mine water through irrigation has been researched in a few collieries in the Witbank area. In this study, the assessment of the impacts of using gypsiferous mine water for irrigation were carried out in parts of the Upper Olifants basin upstream of Witbank Dam, using the ACRU2000 model and its salinity module known as ACRUSalinity. The study area was chosen on the bases of locations of previous field trials and the availability of mine water for large-scale irrigation. The primary objectives of the study were the development of relevant modules in ACRU2000 and ACRUSalinity to enable appropriate modelling and assessment of the impact of large-scale irrigation with mine water and the application of the modified models to the chosen study area. The methodology of the study included the modifications of ACRU2000 and ACRUSalinity and their application at three scales of study, viz. centre pivot, catchment and mine scales. The soils, hydrologic and salt distribution response units obtained from the centre pivot scale study were employed as inputs into the catchment scale study. The soils, hydrologic and salt distribution response units obtained from the catchment assessment were in turn applied in similar land segments identified in the mine used for the mine scale study. The modifications carried out included the incorporation of underground reservoirs as representations of underground mine-out areas, multiple water and associated salt load transfers into and out of a surface reservoir, seepages from groundwater into opencast pits, precipitation of salts in irrigated and non-irrigated areas and the incorporation of a soil surface layer into ACRUSalinity to account for the dissolution of salts during rainfall events. Two sites were chosen for the centre pivot scale study. The two sites (Syferfontein pivot of 21 ha, located in Syferfontein Colliery on virgin soils; Tweefontein pivot of 20 ha, located in Kleinkopje Colliery on rehabilitated soils) were equipped with centre pivots (which irrigated agricultural crops with mine water), as well as with rainfall, irrigation water and soil water monitoring equipment. The pivots were contoured and waterways constructed so that the runoff could leave the pivots over a weir (at Tweefontein pivot) or flume (at Syferfontein pivot) where the automatic monitoring of the quantity and quality of runoff were carried out. The runoff quantities and qualities from the pivots were used for verification of the modified ACRU2000 and ACRUSalinity. The catchment scale study was on the Tweefontein Pan catchment, which was a virgin area mainly within the Kleinkopje Colliery, draining into the Tweefontein Pan. The data on the water storage and qualities in Tweefontein Pan, as well as the soil water salinities in the irrigated area located within the catchment were used for verification of results. In the catchment scale study, different scenarios, including widespread irrigation on virgin and rehabilitated soils, were simulated and evaluated. For the mine scale study, the Kleinkopje Colliery was used. The colliery was delineated into 29 land segment areas and categorized into seven land use types, on the basis of the vegetation and land uses identified in different parts of colliery. The centre pivot and catchment scale studies indicated that the impacts of irrigation with low quality mine water on the water resources are dependent on the soil types, climate, the characteristics and the amount of the irrigation mine water applied, whether irrigation was on virgin on rehabilitated soils and the status of the mine in terms of whether a regional water table has been re-established in an opencast mining system or not. The studies further indicated that the irrigation of agricultural crops with low quality mine water may lead to increases in soil water salinity and drainage to groundwater, but that the mine water use for irrigation iii purposes can be successfully carried out as most of the water input onto the irrigated area will be lost through total evaporation and a significant proportion of the salt input, both from rainfall and irrigation water, will either be precipitated in the soil horizons or dissolved in the soil water of the soil horizons. By irrigating with a saline mine water therefore, the salts associated with the low quality mine water can be removed from the water system, thereby reducing the possibility of off-site salt export and environmental pollution. On-site salt precipitation, however, may lead to accumulation of salts in the soil horizons and consequent restriction of crop yields. Therefore, efficient cropping practices, such as leaching and selection of tolerant crops to the expected soil salinity, may be required in order to avoid the impact of long-term salinity build up and loss of crop yields. The simulated mean annual runoff and salt load contribution to Witbank Dam from the Kleinkopje Colliery were 2.0 x 103 MI and 392 tons respectively. The mean annual runoff and salt load represented 2.7% and 1.4% of the average water and salt load storage in Witbank Dam respectively. About 45% of the total water inflow and 65% of the total salt load contribution from the study area into Witbank Dam resulted from groundwater storage. From the scenario simulations, the least salt export would occur when widespread irrigation is carried out in rehabilitated areas prior to the re-establishment of the water table due to a lower runoff and runoff salt load. It may therefore be a better water management strategy in active collieries if irrigation with mine water is carried out on rehabilitated soils. In conclusion, this research work has shown that successful irrigation of some (salt tolerance) crops with low quality mine water can be done, although increases in the soil water salinity of the irrigated area, runoff from the irrigated area and drainage to the groundwater store can occur. Through the modifications carried out in the ACRU2000 model and the ACRUSalinity module in this research work, a tool has been developed, not only for application in the integrated assessment of impact of irrigation with mine water on water resources, but also for the integrated assessment and management of water resources in coal-mining environments in South Africa. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
|
80 |
Investigation into the technical feasibility of biological treatment of precious metal refining wastewaterMoore, Bronwyn Ann January 2013 (has links)
The hydrometallurgical refining of platinum group metals results in large volumes of liquid waste that requires suitable treatment before any disposal can be contemplated. The wastewater streams are characterized by extremes of pH, high inorganic ion content (such as chloride), significant residual metal loads and small amounts of entrained organic compounds. Historically these effluents were housed in evaporation reservoirs, however lack of space and growing water demands have led Anglo Platinum to consider treatment of these effluents. The aim of this study was to investigate whether biological wastewater treatment could produce water suitable for onsite reuse. Bench-scale activated sludge and anaerobic digestion for co-treatment of an acidic refinery waste stream with domestic wastewater were used to give preliminary data. Activated sludge showed better water treatment at lab scale in terms of removal efficiencies of ammonia (approximately 25%, cf. 20% in anaerobic digestion) and COD (70% cf. 43% in digestion) and greater robustness when biomass health was compared. Activated sludge was consequently selected for a pilot plant trial. The pilot plant was operated on-site and performed comparably with the bench-scale system, however challenges in the clarifier design led to losses of biomass and poor effluent quality (suspended solids washout). The pilot plant was unable to alter the pH of the feed, but a two week maturation period resulted in the pH increasing from 5.3 to 7.0. Tests on algal treatment as an alternative or follow-on unit operation to activated sludge showed it not to be a viable process. The activated sludge effluent was assessed for onsite reuse in flotation and it was found that there was no significant difference between its flotation performance and that of the process water currently used, indicating the effluent generated by the biological treatment system can be used successfully for flotation. Flotation is the method whereby minerals refining operations recover minerals of interest from ore through the addition of chemicals and aeration of the ore slurry. Target minerals adhere to the bubbles and can be removed from the process.
|
Page generated in 0.0963 seconds