• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Skeletal muscle autophagy and mitophagy in response to high-fat feeding and endurance training

Tarpey, Michael 13 January 2016 (has links)
Obesity is associated with reduced skeletal muscle insulin sensitivity, a major risk factor for development of type II diabetes. These metabolic diseases are commonly associated with an accumulation of mitochondrial dysfunction, which is speculated to contribute toward insulin resistance. High-fat diets reduce human skeletal muscle insulin sensitivity and mitochondrial function. Conversely, endurance training increases insulin sensitivity and enhances mitochondrial performance. Recent evidence in mice has found that central mechanisms of mitochondrial quality control, autophagy and mitophagy, may be suppressed in response to excess fat intake, but upregulated following endurance exercise training. These data may provide a mechanism for dietary and exercise-mediated regulation of mitochondrial quality and metabolic function. The current study investigated the impact of an acute high-fat diet on skeletal muscle autophagy and mitophagy in sedentary, healthy, non-obese college age males'. The expression of skeletal muscle autophagy and mitophagy protein markers were analyzed in response to a high-fat meal before and after a 5-day high-fat diet. Next, we examined the differences in skeletal muscle autophagy and mitophagy protein markers, and associations with skeletal muscle metabolic flexibility between endurance-trained male runners' and sedentary, healthy, non-obese males' following an overnight fast and in response to a high-fat meal. Autophagy markers' indicated reduced autophagy activity in response to a high-fat meal and following a high-fat diet, which exacerbated the high-fat meal response. However, these data could not be confirmed due to methodological limitations. Mitophagy markers were not significantly affected by the high-fat meal or diet. There were no significant differences in the expression of autophagy protein markers between endurance-trained and sedentary groups', but mitophagy markers were significantly elevated in endurance-trained runners'. Metabolic flexibility was not significantly different between groups' following an overnight fast or in response to a high-fat meal, and was not associated with the expression of autophagy and mitophagy protein markers. In conclusion, autophagy may be suppressed by a 5-day high-fat diet, but further analysis is required for confirmation. Endurance-trained male runners show increased markers of mitophagy, which were not associated with improved metabolic flexibility while fasted or following a high-fat meal. / Ph. D.
2

Mitochondrial protein assemblies: Biogenesis of the cytochrome c oxidase and mitophagic signaling complexes

Levchenko, Mariia 02 December 2015 (has links)
No description available.
3

Elucidating the functional interplay between Parkinson’s disease-related proteins and the mitochondrion / Etude de l’interaction fonctionnelle entre les protéines impliquées dans la maladie de Parkinson et la mitochondrie

Bertolin, Giulia 19 November 2013 (has links)
La maladie de Parkinson (MP) est une affection neurodégénérative fréquente d’étiologie inconnue, touchant environ 5% de la population mondiale après 80 ans. Environ 10% des cas correspondent à des formes familiales à transmission mendélienne. Pendant longtemps, un dysfonctionnement mitochondrial a été soupçonné jouer un rôle dans la physiopathologie de la MP. Cette possibilité a été récemment corroborée par des découvertes majeures réalisées dans le cadre des formes autosomiques récessives. Parkine et PINK1, les produits de deux gènes associés à ces formes familiales, participent au sein d’une même voie moléculaire au contrôle de la qualité mitochondriale, par la régulation du transport, de la dynamique, de la biogenèse et de la clairance de ces organites.L’objectif de ce travail a été d’élucider certains des mécanismes moléculaires sous-jacents à la régulation de l’homéostasie mitochondriale par Parkine et PINK1. Nous avons utilisé un ensemble d’approches de biologie moléculaire et cellulaire, de biochimie et de microscopie confocale, afin d’identifier et de caractériser des interacteurs moléculaires de Parkine et PINK1 à la membrane mitochondriale externe (MME).Dans la première partie de ce travail, nous avons découvert que la Parkine et PINK1 s’associent sur la MME de mitochondries dysfonctionnelles à proximité de la translocase de la MME (TOM), un complexe dédié à l’import de la grande majorité des protéines mitochondriales. Nous avons montré que ces interactions protéiques jouent un rôle clé dans l’activation du programme de dégradation mitochondriale régulé par la voie PINK1/Parkine. Nous avons également observé que la GTPase de type dynamine Drp1, impliquée dans la fission mitochondriale, est recrutée au niveau de mitochondries endommagées à proximité de Parkine et PINK1 ; ainsi, les processus de fission et de dégradation mitochondriales pourraient être spatialement coordonnés. Dans la deuxième partie de ce projet, nous avons caractérisé l’interaction fonctionnelle entre la Parkine et l’enzyme neuroprotectrice multifonctionnelle de la matrice mitochondriale, 17B-hydroxystéroïde déshydrogénase de type 10 (HSD17B10), dont les taux s’étaient révélés être diminués chez la souris déficiente en Parkine. Nous avons mis en évidence un effet protecteur d’HSD17B10 vis-à-vis de la mitochondrie qui était indépendant de son activité catalytique. Nous avons de plus montré que la Parkine interagit directement avec HSD17B10 à proximité de la machinerie TOM et qu’elle régule positivement l’abondance mitochondriale de cette protéine ; cela suggère qu’elle pourrait promouvoir son import.Dans l’ensemble, ces résultats approfondissent notre connaissance des mécanismes moléculaires mis en jeu par la Parkine et PINK1 dans le contrôle de la qualité mitochondriale, élargissant ainsi notre compréhension de leur rôle dans la physiopathologie des formes autosomiques récessive de MP. / Parkinson’s disease (PD) is a common neurodegenerative disorder of unknown etiology, affecting nearly 5% of the world population over the age of 80. Nearly 10% of PD cases are familial forms with Mendelian inheritance pattern. Mitochondrial dysfunction has long been suspected to play a role in the physiopathology of sporadic PD. This possibility has been recently corroborated by major discoveries in the field of autosomal recessive PD. Parkin and PINK1, the products of two genes associated with these forms, participate in a common molecular pathway focused on maintenance of mitochondrial quality, with roles in mitochondrial transport, dynamics, biogenesis and clearance.The aim of this work was to elucidate some of the molecular mechanisms underlying the regulation of mitochondrial homeostasis by Parkin and PINK1. We used a combination of approaches in molecular and cell biology, biochemistry and confocal microscopy to identify and characterize molecular interactors of Parkin and PINK1 on the outer mitochondrial membrane (OMM).In the first part of my project, we discovered that Parkin and PINK1 associate on dysfunctional mitochondria in proximity of the translocase of the OMM (TOM), a complex devoted to the mitochondrial import of the vast majority of the mitochondrial proteins. We provided evidence that these associations play a key role in activation of the mitochondrial degradation program mediated by the PINK1/Parkin pathway. We also observed that the dynamin-related GTPase Drp1, involved in mitochondrial fission is recruited to defective mitochondria in proximity of Parkin and PINK1, suggesting that mitochondrial fission occurs at sites where mitochondrial clearance is initiated.In the second part of my project, we characterized the functional interaction between Parkin and the multifunctional neuroprotective mitochondrial matrix enzyme 17B-hydroxysteroid dehydrogenase type 10 (HSD17B10), previously found by the team to be altered in abundance in Parkin-deficient mice. We demonstrated that HSD17B10 exerts a mitochondrion-protective function independent of its enzymatic activity. In addition, we provided evidence that Parkin directly interacts with HSD17B10 at the TOM machinery and that it positively regulates its mitochondrial levels, possibly through the regulation of its mitochondrial import.Altogether, these results provide novel insights into the molecular mechanisms by which Parkin and PINK1 control mitochondrial quality, and deepen our understanding of the role of these proteins in the physiopathology of autosomal recessive PD.

Page generated in 0.0528 seconds