371 |
Reinforcement Learning of Dynamic Collaborative DrivingNg, Luke 20 May 2008 (has links)
Dynamic Collaborative Driving is the concept of decentralized multi-vehicle automated driving where vehicles form dynamic local area networks within which information is shared to build a dynamic data representation of the environment to improve road usage and safety. The vision is to have networks of cars spanning multiple lanes forming these dynamic networks so as to optimize traffic flow while maintaining safety as each vehicle travels to its destinations. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal and lateral control. Without this capability, higher-level coordination is not possible.
This thesis investigates the issue of the control of an automobile in the context of a Dynamic Collaborative Driving system. Each vehicle involved is considered a complex composite nonlinear system. Therefore a complex nonlinear model of the vehicle dynamics is formulated and serves as the control system design platform. Due to the nonlinear nature of the vehicle dynamics, a nonlinear approach to control is used to achieve longitudinal and lateral control of the vehicle. This novel approach combines the use of reinforcement learning: a modern machine learning technique, with adaptive control and preview control techniques. This thesis presents the design of both the longitudinal and lateral control systems which serves as a basis for Dynamic Collaborative Driving. The results of the reinforcement learning phase and the performance of the adaptive control systems for single automobile performance as well as the performance in a multi-vehicle platoon is presented.
|
372 |
The role of trust and relationships in human-robot social interactionWagner, Alan Richard 10 November 2009 (has links)
Can a robot understand a human's social behavior? Moreover, how should a robot act in response to a human's behavior? If the goals of artificial intelligence are to understand, imitate, and interact with human level intelligence then researchers must also explore the social underpinnings of this intellect. Our endeavor is buttressed by work in biology, neuroscience, social psychology and sociology. Initially developed by Kelley and Thibaut, social psychology's interdependence theory serves as a conceptual skeleton for the study of social situations, a computational process of social deliberation, and relationships (Kelley&Thibaut, 1978). We extend and expand their original work to explore the challenge of interaction with an embodied, situated robot.
This dissertation investigates the use of outcome matrices as a means for computationally representing a robot's interactions. We develop algorithms that allow a robot to create these outcome matrices from perceptual information and then to use them to reason about the characteristics of their interactive partner. This work goes on to introduce algorithms that afford a means for reasoning about a robot's relationships and the trustworthiness of a robot's partners. Overall, this dissertation embodies a general, principled approach to human-robot interaction which results in a novel and scientifically meaningful approach to topics such as trust and relationships.
|
373 |
Worst-case robot navigation in deterministic environmentsMudgal, Apurva 02 December 2009 (has links)
We design and analyze algorithms for the following two robot navigation problems:
1. TARGET SEARCH. Given a robot located at a point s in the plane, how will a robot navigate to a goal t in the presence of unknown
obstacles ?
2. LOCALIZATION. A robot is "lost" in an environment with a map of its surroundings. How will it find its true location by traveling the minimum distance ?
Since efficient algorithms for these two problems will make a robot completely autonomous, they have held the interest of both robotics and computer science communities.
Previous work has focussed mainly on designing competitive algorithms where the robot's performance is compared to that of an omniscient adversary. For example, a competitive algorithm for target search will compare the distance traveled by the robot with the shortest path from
s to t.
We analyze these problems from the worst-case perspective, which, in our view, is a more appropriate measure. Our results are :
1. For target search, we analyze an algorithm called Dynamic A*. The robot continuously moves to the goal on the shortest path which it recomputes on the discovery of obstacles. A variant of this algorithm has been employed in Mars Rover prototypes.
We show that D* takes O(n log n) time on planar graphs and also show a comparable bound on arbitrary graphs. Thus, our results show that D* combines the optimistic possibility of reaching the goal very soon while competing with depth-first search within a logarithmic factor.
2. For the localization problem, worst-case analysis compares the performance of the robot with the optimal decision tree over the set of possible locations.
No approximation algorithm has been known. We give a polylogarithmic approximation algorithm and also show a near-tight lower bound for the grid graphs commonly used in practice. The key idea is to plan travel on a "majority-rule map" which eliminates uncertainty and permits a link to the half-Group Steiner problem. We also extend the problem to polygonal maps by discretizing the domain using novel geometric techniques.
|
374 |
Formations and Obstacle Avoidance in Mobile Robot ControlÖgren, Petter January 2003 (has links)
<p>This thesis consists of four independent papers concerningthe control of mobile robots in the context of obstacleavoidance and formation keeping.</p><p>The first paper describes a new theoreticallyv erifiableapproach to obstacle avoidance. It merges the ideas of twoprevious methods, with complementaryprop erties, byusing acombined control Lyapunov function (CLF) and model predictivecontrol (MPC) framework.</p><p>The second paper investigates the problem of moving a fixedformation of vehicles through a partiallykno wn environmentwith obstacles. Using an input to state (ISS) formulation theconcept of configuration space obstacles is generalized toleader follower formations. This generalization then makes itpossible to convert the problem into a standard single vehicleobstacle avoidance problem, such as the one considered in thefirst paper. The properties of goal convergence and safetyth uscarries over to the formation obstacle avoidance case.</p><p>In the third paper, coordination along trajectories of anonhomogenuos set of vehicles is considered. Byusing a controlLyapunov function approach, properties such as boundedformation error and finite completion time is shown.</p><p>Finally, the fourth paper applies a generalized version ofthe control in the third paper to translate,rotate and expanda formation. It is furthermore shown how a partial decouplingof formation keeping and formation mission can be achieved. Theapproach is then applied to a scenario of underwater vehiclesclimbing gradients in search for specific thermal/biologicalregions of interest. The sensor data fusion problem fordifferent formation configurations is investigated and anoptimal formation geometryis proposed.</p><p><b>Keywords:</b>Mobile Robots, Robot Control, ObstacleAvoidance, Multirobot System, Formation Control, NavigationFunction, Lyapunov Function, Model Predictive Control, RecedingHorizon Control, Gradient Climbing, Gradient Estimation.</p>
|
375 |
Indoor Navigation for Mobile Robots : Control and RepresentationsAlthaus, Philipp January 2003 (has links)
<p>This thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen.</p><p>Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events.</p><p>In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly.</p><p>A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation.</p><p>In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction.</p><p><b>Keywords:</b>mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interaction</p>
|
376 |
Haptic interaction between naive participants and mobile manipulators in the context of healthcareChen, Tiffany L. 22 May 2014 (has links)
Human-scale mobile robots that manipulate objects (mobile manipulators) have the potential to perform a variety of useful roles in healthcare. Many promising roles for robots require physical contact with patients and caregivers, which is fraught with both psychological and physical implications. In this thesis, we used a human factors approach to evaluate system performance and participant responses when potential end users performed a healthcare task involving physical contact with a robot. We performed four human-robot interaction studies with 100 people who were not experts in robotics (naive participants). We show that physical contact between naive participants and human-scale mobile manipulators can be acceptable and effective in a variety of healthcare contexts. In this thesis, we investigated two forms of touch-based (haptic) interaction relevant to healthcare. First, we studied how participants responded to physical contact initiated by an autonomous robotic nurse. On average, people responded favorably to
robot-initiated touch when the robot indicated that it was a necessary part of a healthcare task. However, their responses strongly depended on what they thought the robot's intentions were, which suggests that this will be an important consideration for future healthcare robots. Second, we investigated the coordination of whole-body motion between human-scale robots and people by the application of forces to the robot's hands and arms. Nurses found this haptic interaction to be intuitive and preferred it over a standard gamepad interface. They also navigated the robot through a cluttered healthcare environment in less time, with fewer collisions, and with less cognitive load via haptic interaction. Through a study with expert dancers, we demonstrated the feasibility of robots as dance-based exercise partners. The experts rated a robot that used only haptic interaction to be a good follower according to subjective measures of dance quality. We also determined that healthy older adults were accepting of using a robot for partner dance-based exercise. On average, they found the robot easy and enjoyable to use and that it performed a partnered stepping task well. The findings in this work make several impacts on the design of robots in healthcare. We found that the perceived intent of robot-initiated touch significantly influenced people's responses. Thus, we determined that autonomous robots that initiate touch with patients can be acceptable in some contexts. This result highlights the importance of
considering the psychological responses of users when designing physical human-robot interactions in addition to considering the mechanics of performing tasks. We found that naive users across three user groups could quickly learn how to effectively use physical interaction to lead a robot during navigation, positioning, and partnered stepping tasks. These consistent results underscore the value of using physical interaction to enable users of varying backgrounds to lead a robot during whole-body motion coordination across different healthcare contexts.
|
377 |
Control of Self-Organizing and Geometric FormationsPruner, Elisha 24 January 2014 (has links)
Multi-vehicle systems offer many advantages in engineering applications such as increased efficiency and robustness. However, the disadvantage of multi-vehicle systems is that they require a high level of organization and coordination in order to successfully complete a task. Formation control is a field of engineering that addresses this issue, and provides coordination schemes to successfully implement multi-vehicle systems. Two approaches to group coordination were proposed in this work: geometric and self-organizing formations. A geometric reconfiguring formation was developed using the leader-follower method, and the self-organizing formation was developed using the velocity potential equations from fluid flow theory. Both formation controllers were first tested in simulation in MATLAB, and then implemented on the X80 mobile robot units. Various experiments were conducted to test the formations under difficult obstacle scenarios. The robots successfully navigated through the obstacles as a coordinated as a team using the self-organizing and geometric formation control approaches.
|
378 |
Global Localization of an Indoor Mobile Robot with a single Base StationHennig, Matthias, Kirmse, Henri, Janschek, Klaus 13 February 2012 (has links) (PDF)
The navigation tasks in advanced home robotic applications incorporating reliable revisiting strategies are dependent on very low cost but nevertheless rather accurate localization systems. In this paper a localization system based on the principle of trilateration is described. The proposed system uses only a single small base station, but achieves accuracies comparable to systems using spread beacons and it performs sufficiently for map building. Thus it is a standalone system and needs no odometry or other auxiliary sensors. Furthermore a new approach for the problem of the reliably detection of areas without direct line of sight is presented. The described system is very low cost and it is designed for use in indoor service robotics. The paper gives an overview on the system concept and special design solutions and proves the possible performances with experimental results.
|
379 |
Formations and Obstacle Avoidance in Mobile Robot ControlÖgren, Petter January 2003 (has links)
This thesis consists of four independent papers concerningthe control of mobile robots in the context of obstacleavoidance and formation keeping. The first paper describes a new theoreticallyv erifiableapproach to obstacle avoidance. It merges the ideas of twoprevious methods, with complementaryprop erties, byusing acombined control Lyapunov function (CLF) and model predictivecontrol (MPC) framework. The second paper investigates the problem of moving a fixedformation of vehicles through a partiallykno wn environmentwith obstacles. Using an input to state (ISS) formulation theconcept of configuration space obstacles is generalized toleader follower formations. This generalization then makes itpossible to convert the problem into a standard single vehicleobstacle avoidance problem, such as the one considered in thefirst paper. The properties of goal convergence and safetyth uscarries over to the formation obstacle avoidance case. In the third paper, coordination along trajectories of anonhomogenuos set of vehicles is considered. Byusing a controlLyapunov function approach, properties such as boundedformation error and finite completion time is shown. Finally, the fourth paper applies a generalized version ofthe control in the third paper to translate,rotate and expanda formation. It is furthermore shown how a partial decouplingof formation keeping and formation mission can be achieved. Theapproach is then applied to a scenario of underwater vehiclesclimbing gradients in search for specific thermal/biologicalregions of interest. The sensor data fusion problem fordifferent formation configurations is investigated and anoptimal formation geometryis proposed. Keywords:Mobile Robots, Robot Control, ObstacleAvoidance, Multirobot System, Formation Control, NavigationFunction, Lyapunov Function, Model Predictive Control, RecedingHorizon Control, Gradient Climbing, Gradient Estimation. / QC 20111121
|
380 |
Visual homing for a car-like vehicleUsher, Kane January 2005 (has links)
This thesis addresses the pose stabilization of a car-like vehicle using omnidirectional visual feedback. The presented method allows a vehicle to servo to a pre-learnt target pose based on feature bearing angle and range discrepancies between the vehicle's current view of the environment and that seen at the learnt location. The best example of such a task is the use of visual feedback for autonomous parallel-parking of an automobile. Much of the existing work in pose stabilization is highly theoretical in nature with few examples of implementations on 'real' vehicles, let alone vehicles representative of those found in industry. The work in this thesis develops a suitable test platform and implements vision-based pose stabilization techniques. Many of the existing techniques were found to fail due to vehicle steering and velocity loop dynamics, and more significantly, with steering input saturation. A technique which does cope with the characteristics of 'real' vehicles is to divide the task into predefined stages, essentially dividing the state space into sub-manifolds. For a car-like vehicle, the strategy used is to stabilize the vehicle to the line which has the correct orientation and contains the target location. Once on the line, the vehicle then servos to the desired pose. This strategy can accommodate velocity and steering loop dynamics, and input saturation. It can also allow the use of linear control techniques for system analysis and tuning of control gains. To perform pose stabilization, good estimates of vehicle pose are required. A simple, yet robust, method derived from the visual homing literature is to sum the range vectors to all the landmarks in the workspace and divide by the total number of landmarks--the Improved Average Landmark Vector. By subtracting the IALV at the target location from the currently calculated IALV, an estimate of vehicle pose is obtained. In this work, views of the world are provided by an omnidirectional camera, while a magnetic compass provides a reference direction. The landmarks used are red road cones which are segmented from the omnidirectional colour images using a pre-learnt, two-dimensional lookup table of their colour profile. Range to each landmark is estimated using a model of the optics of the system, based on a flat-Earth assumption. A linked-list based method is used to filter the landmarks over time. Complementary filtering techniques, which combine the vision data with vehicle odometry, are used to improve the quality of the measurements.
|
Page generated in 0.0667 seconds