• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 245
  • 100
  • 22
  • 12
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 462
  • 462
  • 128
  • 118
  • 103
  • 87
  • 83
  • 80
  • 73
  • 65
  • 57
  • 53
  • 53
  • 50
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Estimação de probabilidade de colisão com obstáculos móveis para navegação autônoma / Mobile obstacle collision probability estimation for autonomous navigation

Felipe Taha Sant\'Ana 01 July 2015 (has links)
Na área de robótica móvel autônoma é importante que o robô siga uma trajetória livre de obstáculos. Estes podem ser desde obstáculos estáticos, como paredes e cadeiras em um ambiente interno, ou mesmo obstáculos móveis, como pessoas caminhando na calçada e carros passando pela rua, quando consideramos ambientes externos. No caso de um ambiente estático, o problema pode ser resolvido planejando uma trajetória livre de colisões, sendo que não é necessário um replanejamento se todos os obstáculos estáticos foram considerados. Para ambientes onde os obstáculos estão em constante movimento, é necessário um constante replanejamento da trajetória para que se evite colisões. Alternativamente, pode ser verificada a possibilidade de se manter na rota planejada, alterando apenas a velocidade de cruzeiro do robô para que este desvie dos obstáculos móveis. Este trabalho propõe uma metodologia para calcular uma velocidade de cruzeiro para o robô de forma a minimizar a probabilidade de colisão com os obstáculos detectados pelos seus sensores. A escolha da variação de velocidade para o robô considera a sua velocidade atual, e as velocidades estimadas para os obstáculos. A metodologia para resolução deste problema é apresentada considerando incertezas na posição do robô e obstáculos. São apresentados resultados de simulação que exemplificam a aplicação da metodologia. / Following a free path is an important issue in the area of autonomous mobile robotics. The obstacles can be anything from walls and chairs in an indoor environment, or they can also be people walking on the sidewalk and cars moving through the street. In the case of a static environment, the problem can be solved by planning a path free from collisions, thus it is not essential another path planning as all static obstacles were considered. For an environment were the obstacles are constantly moving, it is necessary an unceasing path replanning to avoid possible collisions. Alternatively, keeping the robot on the previously calculated path can be verified modifying the robot\'s traffic velocity to avoid moving obstacles. Our proposal is to calculate a velocity for the robot which minimizes its collision probability with moving obstacles detected by its sensors. Varying the robot\'s velocity takes into account its current velocity and the estimated velocities of obstacles. The methodology for solving this problem is presented regarding uncertainties in robots and obstacles\' positions. Results from simulations that exemplifies an application for the methodology are presented.
362

Estudo de uma estrutura em pórtico para utilização em um veículo agrícola autônomo / Study of a portal frame structure for use in an autonomous agriculture vehicle

Freitas, Rafael Rodrigues de 28 May 2008 (has links)
Avanços nas pesquisas em Veículos Agrícolas Autônomos (VAA\'s) e de Robôs Agrícolas Móveis (RAM\'s) têm sido conquistados nos últimos anos. Entretanto, um número limitado de trabalhos foca o desenvolvimento das estruturas destes veículos. O presente trabalho apresenta uma revisão de materiais encontrados na literatura e no mercado. Estudou-se modelagem cinemática de veículos autônomos que possuem configurações de suas estruturas projetadas para ter mobilidade melhorada. Estudaram-se estruturas mecânicas de máquinas que atuam em vários estádios de desenvolvimento de lavouras típicas brasileiras. Baseado no levantamento e esse estudo, foi projetado e construído um veículo com conceito modular e de pórtico para ser uma plataforma robótica no qual é utilizado para o sensoriamento em área agrícola. Uma modelagem cinemática simplificada do veículo foi realizada, fundamentada nos conceitos básicos de cinemáticas em robôs móveis. Por fim é apresentado o desenvolvimento da estrutura em pórtico do veículo. Pretende-se que o resultado auxilie no desenvolvimento de projeto de VAA\'s. / Advance on AAV (Autonomous Agriculture Vehicle) and MAR (Mobile Agriculture Robots) research are noticed in the recent years. However, a limited number of works focus in the structure development of such vehicles. This work introduces a review of the materials found in literature and market. Kinematics models of Autonomous Vehicles that have its structures designed to have mobility improved have been studied. It was studied mechanical structures of machines that act in various stages of typical brazilians crops. Based on this study and survey, a vehicle has been built with a modular concept and portal frame structure format to be used as a robotic platform in which it performs remote sensing in agricultural areas. A simplified Kinematic model have been done using basics concepts of mobile robots kinematics. At the end of this work is presented the portal frame structure development. The results obtained may assist in the design development of AAV\'s.
363

Mapeamento de ambientes externos utilizando robôs móveis / Outdoor mapping using mobile robots

Hata, Alberto Yukinobu 24 May 2010 (has links)
A robótica móvel autônoma é uma área relativamente recente que tem como objetivo a construção de mecanismos capazes de executar tarefas sem a necessidade de um controlador humano. De uma forma geral, a robótica móvel defronta com três problemas fundamentais: mapeamento de ambientes, localização e navegação do robô. Sem esses elementos, o robô dificilmente poderia se deslocar autonomamente de um lugar para outro. Um dos problemas existentes nessa área é a atuação de robôs móveis em ambientes externos como parques e regiões urbanas, onde a complexidade do cenário é muito maior em comparação aos ambientes internos como escritórios e casas. Para exemplificar, nos ambientes externos os sensores estão sujeitos às condições climáticas (iluminação do sol, chuva e neve). Além disso, os algoritmos de navegação dos robôs nestes ambientes devem tratar uma quantidade bem maior de obstáculos (pessoas, animais e vegetações). Esta dissertação apresenta o desenvolvimento de um sistema de classificação da navegabilidade de terrenos irregulares, como por exemplo, ruas e calçadas. O mapeamento do cenário é realizado através de uma plataforma robótica equipada com um sensor laser direcionado para o solo. Foram desenvolvidos dois algoritmos para o mapeamento de terrenos. Um para a visualização dos detalhes finos do ambiente, gerando um mapa de nuvem de pontos e outro para a visualização das regiões próprias e impróprias para o tráfego do robô, resultando em um mapa de navegabilidade. No mapa de navegabilidade, são utilizados métodos de aprendizado de máquina supervisionado para classificar o terreno em navegável (regiões planas), parcialmente navegável (grama, casacalho) ou não navegável (obstáculos). Os métodos empregados foram, redes neurais artificais e máquinas de suporte vetorial. Os resultados de classificação obtidos por ambos foram posteriormente comparados para determinar a técnica mais apropriada para desempenhar esta tarefa / Autonomous mobile robotics is a recent research area that focus on the construction of mechanisms capable of executing tasks without a human control. In general, mobile robotics deals with three fundamental problems: environment mapping, robot localization and navigation. Without these elements, the robot hardly could move autonomously from a place to another. One problem of this area is the operation of the mobile robots in outdoors (e.g. parks and urban areas), which are considerably more complex than indoor environments (e.g. offices and houses). To exemplify, in outdoor environments, sensors are subjected to weather conditions (sunlight, rain and snow), besides that the navigation algorithms must process a larger quantity of obstacles (people, animals and vegetation). This dissertation presents the development of a system that classifies the navigability of irregular terrains, like streets and sidewalks. The scenario mapping has been done using a robotic platform equipped with a laser range finder sensor directed to the ground. Two terrain mapping algorithms has been devolped. One for environment fine details visualization, generating a point cloud map, and other to visualize appropriated and unappropriated places to robot navigation, resulting in a navigability map. In this map, it was used supervised learning machine methods to classify terrain portions in navigable (plane regions), partially navigable (grass, gravel) or non-navigable (obstacles). The classification methods employed were artificial neural networks and support vector machines. The classification results obtained by both were later compared to determine the most appropriated technique to execute this task
364

Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs / Intelligent strategies applied to autonomous mobile robots and groups of robots

Pessin, Gustavo 05 April 2013 (has links)
O contínuo aumento da complexidade no controle de sistemas robóticos, bem como a aplicação de grupos de robôs auxiliando ou substituindo seres humanos em atividades críticas tem gerado uma importante demanda por soluções mais robustas, flexíveis, e eficientes. O desenvolvimento convencional de algoritmos especializados, constituídos de sistemas baseados em regras e de autômatos usados para coordenar estes conjuntos físicos em um ambiente dinâmico é um desafio extremamente complexo. Diversos modelos de desenvolvimento existem, entretanto, muitos desafios da área da robótica móvel autônoma continuam em aberto. Esta tese se insere no contexto da busca por soluções inteligentes a serem aplicadas em robôs móveis autônomos com o objetivo de permitir a operação destes em ambientes dinâmicos. Buscamos, com a investigação e aplicação de estratégias inteligentes por meio de aprendizado de máquina no funcionamento dos robôs, a proposta de soluções originais que permitam uma nova visão sobre a operação de robôs móveis em três dos desafios da área da robótica móvel autônoma, que são: localização, navegação e operações com grupos de robôs. As pesquisas sobre localização e coordenação de grupos apresentam investigação e propostas originais, buscando estender o estado da arte, onde apresentam resultados inovadores. A parte sobre navegação tem como objetivo principal ser um elo entre os conceitos de localização e coordenação de grupos, sendo o foco o desenvolvimento de um veículo autônomo com maior implicação em avanços técnicos. Relacionado com a coordenação de grupos de robôs, fizemos a escolha de trabalhar sobre uma aplicação modelada como o problema de combate a incêndios florestais. Buscamos desenvolver um ambiente de simulação realístico, onde foram avaliadas quatro técnicas para busca de iii estratégias de formação do grupo: Algoritmos Genéticos, Otimização por Enxame de Partículas, Hill Climbing e (iv) Simulated Annealing. Com base nas diversas avaliações realizadas pudemos mostrar quais das técnicas e conjuntos de parâmetros permitem a obtenção de resultados mais acurados que os demais. Além disso, mostramos como uma heurística baseada em populações anteriores pode auxiliar na tolerância a falhas da operação. Relacionado com a tarefa de navegação, apresentamos o desenvolvimento de um veículo autônomo de grande porte funcional para ambientes externos. Buscamos aperfeiçoar uma arquitetura para navegação autônoma, baseada em visão monocular e com capacidade de seguir pontos esparsos de GPS. Mostramos como a simulação e os usos de robôs de pequeno porte auxiliaram no desenvolvimento do veículo de grande porte e apresentamos como as redes neurais podem ser aplicadas nos modelos de navegação autônoma. Na investigação sobre localização, mostramos um método utilizando informação obtida de redes sem fio para prover informação de localização para robôs móveis. As informações obtidas da rede sem fio são utilizadas para aprendizado da posição de um robô móvel por meio de uma rede neural. Diversas avaliações foram realizadas buscando entender o comportamento do sistema com diferentes números de pontos de acesso, com uso de filtros, com diferentes topologias. Os resultados mostram que o modelo usando redes sem fio pode ser um possível método prático e barato para localização de robôs móveis. Esta tese aborda temas relevantes e propostas originais relacionadas com os objetivos propostos, apresentando métodos que provenham autonomia na coordenação de grupos e nas atividades individuais dos mesmos. A busca por altos graus de eficiência na resolução de tarefas em ambientes dinâmicos ainda é um campo que carece de soluções e de um aprofundamento nas pesquisas. Sendo assim, esta pesquisa buscou agregar diversos avanços científicos na área de pesquisa de robôs móveis autônomos e coordenação de grupos, por meio da aplicação de estratégias inteligentes / The constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
365

Robot odour localisation in enclosed and cluttered environments using naïve physics

Kowadlo, Gideon January 2007 (has links)
Odour localisation is the problem of finding the source of an odour or other volatile chemical. It promises many valuable practical and humanitarian applications. Most localisation methods require a robot to reactively track an odour plume along its entire length. This approach is time consuming and may be not be possible in a cluttered indoor environment, where airflow tends to form sectors of circulating airflow. Such environments may be encountered in crawl-ways under floors, roof cavities, mines, caves, tree-canopies, air-ducts, sewers or tunnel systems. Operation in these places is important for such applications as search and rescue and locating the sources of toxic chemicals in an industrial setting. This thesis addresses odour localisation in this class of environments. The solution consists of a sense-map-plan-act style control scheme (and low level behaviour based controller) with two main stages. Firstly, the airflow in the environment is modelled using naive physics rules which are encapsulated into an algorithm named a Naive Reasoning Machine. It was used in preference to conventional methods as it is fast, does not require boundary conditions, and most importantly, provides approximate solutions to the degree of accuracy required for the task, with analogical data structures that are readily useful to a reasoning algorithm. Secondly, a reasoning algorithm navigates the robot to specific target locations that are determined with a physical map, the airflow map, and knowledge of odour dispersal. Sensor measurements at the target positions provide information regarding the likelihood that odour was emitted from potential odour source locations. The target positions and their traversal are determined so that all the potential odour source sites are accounted for. The core method provides values corresponding to the confidence that the odour source is located in a given region. A second search stage exploiting vision is then used to locate the specific location of the odour source within the predicted region. This comprises the second part of a bi-modal, two-stage search, with each stage exploiting complementary sensing modalities. Single hypothesis airflow modelling faces limitations due to the fact that large differences between airflow topologies are predicted for only small variations in a physical map. This is due to uncertainties in the map and approximations in the modelling process. Furthermore, there are uncertainties regarding the flow direction through inlet/outlet ducts. A method is presented for dealing with these uncertainties, by generating multiple airflow hypotheses. As the robot performs odour localisation, airflow in the environment is measured and used to adjust the confidences of the hypotheses using Bayesian inference. The best hypothesis is then selected, which allows the completion of the localisation task. This method improves the robustness of odour localisation in the presence of uncertainties, making it possible where the single hypothesis method would fail. It also demonstrates the potential for integrating naive physics into a statistical framework. Extensive experimental results are presented to support the methods described above.
366

Indoor Navigation for Mobile Robots : Control and Representations

Althaus, Philipp January 2003 (has links)
This thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen. Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events. In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly. A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation. In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction. <b>Keywords:</b>mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interaction
367

Robot-In-The-Loop Simulation to Support Multi-Robot System Development: A Dynamic Team Formation Example

Azarnasab, Ehsan 03 May 2007 (has links)
Modeling and simulation provides a powerful technology for engineers and managers to understand, design, and evaluate a system under development. Traditionally, simulation is only used in early stages of a system design. However, with the advances of hardware and software technology, it is now possible to extend simulation to late stages for supporting a full life cycle simulation-based development. Robot-in-the-loop simulation, where real robots work together with virtual ones, has been developed to support such a development process to bridge the gap between simulation and reality.
368

Development Of A Mobile Robot Platform To Be Used In Mobile Robot Research

Gonullu, Muhammet Kasim 01 February 2013 (has links) (PDF)
Robotics is an interdisciplinary subject and combines mechanical, computer and electrical engineering components together to solve different kinds of problems. In order to build robotic systems, these disciplines should be integrated. Therefore, mobile robots can be used as a tool in education for teaching engineering concepts. They can be employed to be used in undergraduate, graduate and doctorate research. Hands on experience on a mobile robot increase motivation of the students on the topic and give them precious practical knowledge. It also delivers students new skills like teamwork, problem solving, creativity, by executing robotic exercises. To be able to fulfill these outcomes, universities and research centers need mobile robot platforms that are modular, easy to build, cheap and flexible. However it should be also powerful and capable of being used in different research studies and hence be customizable depending on the requirements of these topics. This thesis aims at building an indoor mobile robot that can be used as a platform for developing algorithms involving various sensors incorporated onto a mobile platform. More precisely, it can be used as a base for indoor navigation and localization algorithms, as well as it can be used as platform for developing algorithms for larger autonomous mobile robots. The thesis work involves the design and manufacturing of a mobile robot platform that can potentially facilitate mobile robotics research that involves use of various hardware to develop and test different perception and navigation algorithms.
369

Reinforcement Learning of Dynamic Collaborative Driving

Ng, Luke 20 May 2008 (has links)
Dynamic Collaborative Driving is the concept of decentralized multi-vehicle automated driving where vehicles form dynamic local area networks within which information is shared to build a dynamic data representation of the environment to improve road usage and safety. The vision is to have networks of cars spanning multiple lanes forming these dynamic networks so as to optimize traffic flow while maintaining safety as each vehicle travels to its destinations. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal and lateral control. Without this capability, higher-level coordination is not possible. This thesis investigates the issue of the control of an automobile in the context of a Dynamic Collaborative Driving system. Each vehicle involved is considered a complex composite nonlinear system. Therefore a complex nonlinear model of the vehicle dynamics is formulated and serves as the control system design platform. Due to the nonlinear nature of the vehicle dynamics, a nonlinear approach to control is used to achieve longitudinal and lateral control of the vehicle. This novel approach combines the use of reinforcement learning: a modern machine learning technique, with adaptive control and preview control techniques. This thesis presents the design of both the longitudinal and lateral control systems which serves as a basis for Dynamic Collaborative Driving. The results of the reinforcement learning phase and the performance of the adaptive control systems for single automobile performance as well as the performance in a multi-vehicle platoon is presented.
370

Parallel algorithms for target tracking on multi-coreplatform with mobile LEGO robots

Wahlberg, Fredrik January 2011 (has links)
The aim of this master thesis was to develop a versatile and reliable experimentalplatform of mobile robots, solving tracking problems, for education and research.Evaluation of parallel bearings-only tracking and control algorithms on a multi-corearchitecture has been performed. The platform was implemented as a mobile wirelesssensor network using multiple mobile robots, each using a mounted camera for dataacquisition. Data processing was performed on the mobile robots and on a server,which also played the role of network communication hub. A major focus was toimplement this platform in a flexible manner to allow for education and futureresearch in the fields of signal processing, wireless sensor networks and automaticcontrol. The implemented platform was intended to act as a bridge between the idealworld of simulation and the non-ideal real world of full scale prototypes.The implemented algorithms did estimation of the positions of the robots, estimationof a non-cooperating target's position and regulating the positions of the robots. Thetracking algorithms implemented were the Gaussian particle filter, the globallydistributed particle filter and the locally distributed particle filter. The regulator triedto move the robots to give the highest possible sensor information under givenconstraints. The regulators implemented used model predictive control algorithms.Code for communicating with filters in external processes were implementedtogether with tools for data extraction and statistical analysis.Both implementation details and evaluation of different tracking algorithms arepresented. Some algorithms have been tested as examples of the platformscapabilities, among them scalability and accuracy of some particle filtering techniques.The filters performed with sufficient accuracy and showed a close to linear speedupusing up to 12 processor cores. Performance of parallel particle filtering withconstraints on network bandwidth was also studied, measuring breakpoints on filtercommunication to avoid weight starvation. Quality of the sensor readings, networklatency and hardware performance are discussed. Experiments showed that theplatform was a viable alternative for data acquisition in algorithm development and forbenchmarking to multi-core architecture. The platform was shown to be flexibleenough to be used a framework for future algorithm development and education inautomatic control.

Page generated in 0.0684 seconds