1 |
Osmo-inelastic response of intervertebral disc : experiments and constitutive modeling / Réponse osmo-inélastique du disque intervertébral : caractérisation expérimentale et modélisation constitutiveDerrouiche, Amil 12 December 2018 (has links)
Le mal de dos est considéré comme la première source de douleurs chroniques dans les pays développés. Bien que l'origine exacte de la douleur reste incertaine, on trouve souvent une corrélation avec le disque intervertébral. Comprendre la réponse de ce tissu mou est nécessaire pour améliorer les traitements et prévenir la douleur. L'objectif de ce travail de thèse est d'apporter une meilleurecompréhension des différents couplages entre l'environnement biochimique, la microstructure et le comportement biomécanique. Des observations expérimentales sont reportées à l'échelle de l'unité vertèbre-disque-vertèbre et à l'échelle de l'anneau fibreux. Un nouveau modèle chemo-mécanique est mathématique formulé et incorporé dans un code informatique afin, d'une part, de mieux comprendreles couplages et, d'autre part, de reproduire la mécanique de l'u nité. Une extension au couplage chemo-mécano-biologique permet d'envisager une meilleu re compréhension des mécanismes de dégénérescence. / Back pain is considered the first source of chronic pain in developed countries. Although the exact origin of the pain remains uncertain, there is often a correlation with the interve1tebral dise. Understanding the response of this soft tissue is necessary to improve treatments and prevent pain. The objective of this thesis is to provide a better understanding of the different couplings between thebiochemical environment, the microstructure and the biomechanical behavior. Experimental observations are reported at the level of the vertebra-disc-vertebra unit and at the level of the annulus fibrosu s. A new chemo-mechanical model is mathematical formulated and incorporated into a computer code in order to better understand the couplings and to reproduce the mechanics of the unit. An extension to chemo-mechano-biological coupling makes it possible to envisage a better understanding of the degeneration mechanisms.
|
2 |
Réponse thermo-mécanique des élastomères sous chargement cyclique : modélisation constitutive et expérience / Thermo-mechanical response of rubbers under cyclic loading : constitutive modeling and experimentsGuo, Qiang 18 January 2019 (has links)
Les caoutchoucs utilisés dans les applications d’ingénierie sont souvent sollicités cycliquement et présentent une réponse thermomécanique complexe dépendante du temps. Établir le couplage entre les différents phénomènes inélastiques, apparaissant généralement ensemble au cours de l’historique du chargement cyclique, est une question ouverte à résoudre. Cette thèse est dédiée à la formulation et à la vérification expérimentale de modèles de comportement thermomécaniques pour les caoutchoucs. Le mémoire de thèse est divisé en deux parties. La première partie est axée sur les caoutchoucs renforcés par du noir de carbone. Les effets du pré-étirement et de la teneur en noir de carbone sur la réponse cyclique d'un caoutchouc synthétique représentatif (SBR) sont analysés qualitativement et quantitativement à l'aide de la théorie des variables internes. Une interprétation des mécanismes physiques sous-jacents est proposée dans laquelle deux types de réarrangements dissipatifs du réseau de chaînes sont considérés, à savoir les réarrangements recouvrables induisant une viscoélasticité et les réarrangements non recouvrables induisant un endommagement. Afin de prédire l'ensemble des principaux effets inélastiques (l’adoucissement de la contrainte induit par la fatigue et l’hystérésis ainsi que la dissipation thermique), nous avons formulé un nouveau modèle constitutif thermo-viscoélastique endommageable basé sur la théorie des variables internes. Le modèle constitutif proposé est implémenté dans un code éléments finis et des applications numériques sur des structures en caoutchouc sont effectuées. Les capacités prédictives du modèle sont vérifiées par des comparaisons avec nos observations expérimentales. La seconde partie est consacrée aux caoutchoucs cristallisables par étirement. Nous avons développé un nouveau modèle physiquement fondé inspiré du micro-mécanisme pour décrire l'évolution progressive du degré de cristallinité dans les caoutchoucs et leur réponse thermomécanique dépendante du temps dans le contexte de la thermodynamique des processus irréversibles. Dans ce modèle, la configuration moléculaire d’une chaîne partiellement cristallisée est analysée et calculée au moyen de certaines méthodes mécaniques statistiques. Notre approche est implémentée dans le modèle micro-sphère dans le but d'introduire l'anisotropie et la dissipation induites par la cristallisation d’un réseau de chaînes. Le modèle constitutif proposé est ensuite utilisé pour discuter certains aspects importants du micro-mécanisme et de la réponse macroscopique à l'état d'équilibre et à l'état non équilibré pendant l'étirement/la recouvrance/la relaxation continue. Les simulations du modèle sont également comparées aux données expérimentales à différents niveaux d'étirement et à différentes températures. Les champs locaux en termes d'anisotropie et de dissipation sont présentés à l'aide d'exemples numériques. / Establishing the coupling between the different inelastic phenomena, usually appearing together during the cyclic loading history, is an open issue to be addressed. The Phd report is divided into two parts. The first part is focused on filled rubbers. The effects of pre-stretch and filler content on the history-dependent cyclic response of a representative carbon-filled synthetic rubber (SBR) are qualitatively and quantitatively analyzed by using the internal state variable theory. An interpretation of the underlying physical mechanisms is proposed in which two types of dissipative network rearrangements are considered, i.e. recoverable rearrangements inducing viscoelasticity and unrecoverable rearrangements inducing damage. In order to predict the main set of inelastic fatigue effects (fatigue-induced stress-softening and hysteresis along with dissipative heating), we formulate a new thermo-viscoelastic-damage constitutive model based on the internal state variable theory. The proposed constitutive model is implemented into a finite element program and numerical applications on rubber structures are performed. The predictive capabilities of the model are verified by comparisons with our experimental observations. The second part is focused on stretch-induced crystallizable rubbers. We develop a new micro-mechanism inspired molecular chain model to describe the progressive evolution of the crystallinity degree in rubbers and the history-dependent thermo-mechanical response within the context of the thermodynamic framework. In this model, the molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods. Our approach is implemented into the micro-sphere model in the aim to introduce the crystallization-induced anisotropy and dissipation. The proposed constitutive model is then used to discuss some important aspects of the micro-mechanism and the macro-response under the equilibrium state and the non-equilibrium state involved during stretching/recovery/continuous relaxation. The model simulations are also compared to experimental data at different stretch levels and temperatures. Local fields in terms of anisotropy and dissipation are presented on illustrative numerical examples.
|
3 |
Prise en compte d'une échelle intermédiaire dans la modélisation micro-structurelle des sols granulaires / Including a meso-structure in multi-scale modeling of granular soilsZhu, Huaxiang 11 December 2015 (has links)
Les matériaux granulaires exhibe un spectre très large de propriétés constitutives, le long de chemins de chargement très divers. Développer des modèles constitutifs permettant de reproduire ces caractéristiques a demeuré un réel challenge scientifique au cours des dernières décennies. A cet égard, les approches multi-échelles constituent aujourd’hui une voie très prometteuse. Elles permettent de relier les propriétés macroscopiques à celles observées à l’échelle microscopique.Une investigation a été menée sur la base de simulations numériques discrètes (DEM)d’essais biaxiaux, afin d’identifier les caractéristiques micro-structurelles du matériau granulaire, la manière dont elles évoluent au cours d’un chemin de chargement, et le rôle qu’elles jouent dans l’émergence du comportement macroscopique. A l’échelle mésoscopique,le réseau de transmission de force (chaines de force) et les cellules définies parles vecteurs branches (meso-cycles) apparaissent jouer un rôle de première importance.Les meso-cycles, construits à partir du réseau de contact de l’assemblage, peuvent être caractérisés en fonction du nombre de cotés qu’ils contiennent (topologie). Leur influence sur le comportement volumique de l’échantillon est en effet étroitement liée à ce nombre de contact. En outre, leur interaction avec les chaines de force est également fortement dépendante de leur topologie. Ainsi, les cycles contenant 3 cotés (L3) participent activement à la stabilisation des chaines de force, alors que les cycles contenants au moins6 cotés (L6+) contribuent essentiellement au comportement dilatant de l’échantillon et à l’effondrement des chaines de force. Enfin, l’existence d’une méso-structure unique à l’état critique, au sein de la bande de cisaillement (rupture localisée) ou au sein de l’échantillon (rupture diffuse), est clairement démontrée.viii Sur la base de ces résultats, un modèle constitutif a été développé à partir du modèle H-directionnel (Nicot and Darve, 2011b). La structure du matériau granulaire est décrite par un assemblage d’hexagones (modélisant les cycles L6), orientés dans toutes les directions de l’espace. A partir d’opérations d’homogénéisation, les contraintes et les déformations incrémentales peuvent être reliées à l’échelle de l’assemblage, donnant lieu à un modèle de comportement dont la performance a pu être testée le long de chemins de chargements variés. / Granular materials exhibit a wide spectrum of constitutive features under various loading paths. Developing constitutive models which succeed to characterize these features has been challenging scientists for decades. A promising direction of achieving this can be the multi-scale approach. Through which the constitutive model is formulated in the way that relating material's macroscopic properties to their micro-scale essences, namely, corresponding micro-structure properties.To better characterize the micro-structure and formulate the relation between different scales, a comprehensive investigation have been carried out on the basis of numerical biaxial tests using 2D discrete element method (DEM), in order to ascertain the micro-structure characteristics of the granular material, the way they evolve versus loading and their corresponding rules in the macroscopic behaviors. In a meso-scale, intermediate between the single contact scale and the macro-scale, the force transmission network (force-chains) and area element enclosed by contacts branches (meso-loops) are highlighted in terms of their significant influences on material's macro-scale behavior. Meso-loops herein are tessellated from the whole area of the granular assembly by the contact branch network, and are subsequently categorized according to their side number.The development of meso-loops is observed to be intimately related to material's volumetric evolution, especially the plastic part. Then, the interaction between force-chains and meso-loops and its significance to the global volumetric behavior are revealed. Otherwise, in critical state, an identical meso-structure is found in the failure area of both localized and diffuse failure mode. Meso-loops with 3 sides (L3) appear to be indispensable for the force-chain stability, meanwhile, meso-loops with more than or equal to 6 sides (L6+) contribute much to the volume expansion and accelerate the force-chain buckling. The interplay between L3 and L6+ largely embody, or are representative of, the various mechanical performance of the granular material.A constitutive model has been developed by modifying the H-directional model. In this model, individual hexagons, representatives of L6+, construct the fabric as distributing along different directions in the space. Then multi-scale approach is then used to relate macroscopic properties from local ones, and eventually, to give the constitutive relation. This model is then validated in different loading paths, and eventually proved satisfying.
|
4 |
Development and optimization of a formable sandwich sheetBesse, Camille 06 April 2012 (has links) (PDF)
Le comportement mécanique d'un nouveau type de tôle sandwich métallique apte à la mise en forme est étudié. La couche cœur est composée de deux tôles gaufrées, brasées entre elles. Contrairement aux panneaux sandwichs conventionnels, ce type de tôle sandwich peut être mis en forme par les techniques traditionnelles de travail des métaux. Dans un premier temps, la géométrie de la structure gaufrée est optimisée afin d'obtenir la couche cœur présentant un rapport raideur au cisaillement - densité relative maximal. L'étude se concentre ensuite sur le comportement plastique de la structure sandwich " optimale " à l'aide de simulations par éléments finis d'expériences multiaxiales. On propose un modèle phénoménologique faisant appel à une loi d'écoulement associée et à un modèle d'écrouissage isotrope avec distorsion. Les paramètres du modèle sont identifiés par une approche inverse à partir d'un essai de traction uniaxial et d'un essai de flexion 4 points. Finalement, des simulations de pliage en U sont réalisées, utilisant un modèle détaillé d'une part et un modèle coque d'autre part. Pour différents outils de mise en forme, un bon accord entre les simulations est observé, validant en partie le modèle phénoménologique proposé.
|
5 |
Mechanical behaviour of compacted earth with respect to relative humidity and clay content : experimental study and constitutive modelling / Comportement mécanique de la terre compactée par rapport à l'humidité relative et à la teneur en argile : étude expérimentale et modélisation constitutiveXu, Longfei 04 July 2018 (has links)
La terre compactée est considérée comme un mélange granulaire dans lequel l'argile joue un rôle de liant mais cette dernière exhibe une forte interaction avec l'eau. Pendant la durée de vie en service, la terre compactée est soumise aux changements de l’humidité relative. En raison de ces changements des conditions ambiantes perpétuels, la teneur en eau dans la terre varie, impactant leur performance mécanique. Le présent travail a ainsi pour but d’étudier l’impact de l’humidité relative et de la teneur d'argile sur le comportement mécanique de la terre compactée. Il se réalisera au travers d’études expérimentales et d'une modélisation constitutive. Dans la première partie de cette thèse, quatre terres régionales de provenances et de teneurs d'argile différentes sont identifiées. Une étude comparative a été réalisée entre le double compactage statique et le compactage dynamique. En parallèle, trois types d'essais spécifiques : essais de succion par la méthode de papier-filtre, essais de retrait et essais d'absorption d'eau, ont été menés pour donner des indications préliminaires quant aux effets d'interaction entre l'eau et l'argile. Dans la deuxième partie, l’impact de l’humidité relative et de la teneur d'argile sur le comportement de cisaillement a été étudié, prenant en compte des cycles de chargement-déchargement. En adoptant une définition particulière de la contrainte effective de Bishop, il a également été observé que les états de rupture dans le plan (p'-q) pour tous les échantillons sont alignés approximativement à une ligne droite unique passant par l'origine, quelque soit la succion et la pression de confinement. Sur la base des résultats expérimentaux, un nouveau modèle constitutif a été développé pour la simulation du comportement mécanique de la terre compactée. Ce nouveau modèle a ainsi été formulé dans la cadre de la mécanique de l'endommagement des milieux continus et de la théorie de Bounding Surface Plasticity. / Compacted earth is regarded as a granular mixture in which clay plays a role of binder but it also exhibits an important interaction with water. During their service life, compacted earth can be subject to large changes in relative humidity. Those perpetual changes of environmental conditions induce continuous changes of water content of the earth that impact significantly its mechanical performances. The present work aimes at studying the mechanical behavior of compacted earth with respect to relative humidity and clay content. It involves an extensive experimental study and a constitutive modelling. In the first part of this thesis, four kinds of local earth are identified with different clay contents. A comparison of compaction method was then conducted between a double static compaction and dynamic compaction. Three types of specific tests: suction test by filter paper method, shrinkage test and sorption-desorption test were carried out, thereby providing a preliminary insight on the interaction effects between clay and water. In the second part, the impact of clay and moisture contents on the shear behavior of compacted earth was investigated taking into account loading-unloading cycles. Adopting a particular definition of Bishop's effective stress, failure states of all samples were observed to lie approximately on a unique failure line crossing the origin in the (p'-q) plane regardless of matric suction and confining pressure. Finally, based on the above experimental results, a new constitutive model was proposed, based on the theories of Bounding Surface Plasticity and continuum damage mechanics, aiming to simulate mechanical behaviour of compacted earth.
|
Page generated in 0.3484 seconds