• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Introduction to Application of Statistical Methods in Modeling the Climate Change

Mohammadipour Gishani, Azadeh January 2012 (has links)
There are many unsolved questions about the future of climate, and most of them are due to lack of knowledgeabout the complex system of atmosphere, but still there are models that produce relatively realistic projectionsof the future although there are uncertainties in the presentation of them, and that's where statistical methodscould be of help. Here a short introduction is given to the projection of future climate with GCM ensembles andthe uncertainties about them, the emerging probabilistic approach, as well as the REA (Reliability EnsembleAverage) method for measuring the reliability of the model projections. In order to have an impression of theresults of the GCM ensemble results and their uncertainties the results of the weather forecast over a time periodof one year in three dierent cities of Sweden is studied as well.
2

Cognitive and Behavioral Model Ensembles for Autonomous Virtual Characters

Whiting, Jeffrey S. 08 June 2007 (has links) (PDF)
Cognitive and behavioral models have become popular methods to create autonomous self-animating characters. Creating these models presents the following challenges: (1) Creating a cognitive or behavioral model is a time intensive and complex process that must be done by an expert programmer (2) The models are created to solve a specific problem in a given environment and because of their specific nature cannot be easily reused. Combining existing models together would allow an animator, without the need of a programmer, to create new characters in less time and would be able to leverage each model's strengths to increase the character's performance, and to create new behaviors and animations. This thesis provides a framework that can aggregate together existing behavioral and cognitive models into an ensemble. An animator only has to rate how appropriately a character performed and through machine learning the system is able to determine how the character should act given the current situation. Empirical results from multiple case studies validate the approach taken.

Page generated in 0.0649 seconds