• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 53
  • 26
  • 24
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 575
  • 575
  • 489
  • 178
  • 103
  • 92
  • 90
  • 83
  • 66
  • 62
  • 57
  • 56
  • 56
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Model Predictive Control for Active Magnetic Bearings

Lundh, Joachim January 2012 (has links)
This thesis discuss the possibility to position control a rotor levitated with active magnetic bearings. The controller type considered is model predictive control which is an online strategy that solves an optimization problem in every sample, making the model predictive controller computation-intense. Since the sampling time must be short to capture the dynamics of the rotor, very little time is left for the controller to perform the optimization. Different quadratic programming strategies are investigated to see if the problem can be solved in realtime. Additionally, the impact of the choices of prediction horizon, control horizon and terminal cost is discussed. Simulations showing the characteristics of these choises are made and the result is shown. / Det här examensarbetet diskuterar möjligheten att positionsreglera en rotor som leviteras på aktiva magnetlager. Reglerstrategin som används är modellbaserad prediktionsreglering vilket är en online-metod där ett optimeringsproblem löses i varje sampel. Detta gör att regulatorn blir mycket beräkningskrävande. Samplingstiden för systemet är mycket kort för att fånga dynamiken hos rotorn. Det betyder att regulatorn inte ges mycket tid att lösa optimeringsproblemet. Olika metoder för att lösa QP-problem betraktas för att se om det är möjligt att köra regulatorn i realtid. Dessutom diskuteras hur valet av prediktionshorisont, reglerhorisont och straff på sluttillståndet påverkar regleringen. Simuleringar som visar karakteristiken av dessa val har utförts.
112

A practical approach to detection of plant model mismatch for MPC

Carlsson, Rickard January 2010 (has links)
The number of MPC installations in industry is growing as a reaction to demands of increased efficiency. An MPC controller uses an internal plant model to run real-time predictive optimization of future inputs. If a discrepancy between the internal plant model and the plant exists, control performance will be affected. As time from commissioning increases the model accuracy tends to deteriorate. This is natural as the plant changes over time. It is important to detect these changes and re-identify the plant model to maintain control performance over time. A method for identifying Model Plant Mismatch for MPC applications is developed. Focus has been on developing a method that is simple to implement but still robust. The method is able to run in parallel with the process in real time. The efficiency of the method is demonstrated via representative simulation examples.An extension to detection of nonlinear mismatch is also considered, which is important since linear plant models often are used within a small operating range. Since most processes are nonlinear this discrepancy is inevitable and should be detected. / Ökade krav på effektivitet gör att industrin söker efter mer avancerad processtyrning. MPC har växt fram som en kandidat. En MPC regulator änvänder en modell av systemet för att samtidigt som systemet körs utföra en optimering av framtida styrsignaler. Om modellen innehåller felaktigheter kan reglerprestandan påverkas. En modell försämras normalt då tiden från idrifttagning växer eftersom systemet förändras med tiden. Det är av största vikt att upptäcka dessa förändringar och sedan uppdatera modellen för att reglerprestandan inte ska påverkas. Avsikten är att utveckla en metod för att upptäcka modellfel med fokus på att den ska vara enkel att implementera. Det ska även vara möjligt att använda metoden parallellt med en process. För att utvärdera metoden så körs den på ett antal representativa simuleringsexempel. Det har även varit en avsikt att utveckla en metod för detektion av ickelinjära modellfel. Motivet till det är att linjära modeller används för att beskriva ickelinjära processer och då är modellfel naturliga.
113

Missilstyrning med Model Predictive Control / Missile Control using Model Predictive Control

Rosdal, David January 2005 (has links)
This thesis has been conducted at Saab Bofors Dynamics AB. The purpose was to investigate if a non-linear missile model could be stabilized when the optimal control signal is computed considering constraints on the control input. This is particularly interesting because the missile is controlled with rudders that have physical bounds. This strategy is called Model Predictive Control. Simulations are conducted to compare this strategy with others; firstly simulations with step responses and secondly simulations when the missile is supposed to hit a moving target. The latter is performed to show that the missile can be stabilized in its whole area of operation. The simulations show that the controller indeed can stabilize the missile for the given scenarios. However, this control strategy does not show any obvious improvements in comparison with alternative ones.
114

The Use of Positioning Systems for Look-Ahead Control in Vehicles / Användning av positioneringssystem för prediktiv reglering av fordon

Gustafsson, Niklas January 2006 (has links)
The use of positioning systems in a vehicle is a research intensive field. In the first part of this thesis an increase in new applications is disclosed through a mapping of patent documents on how positioning systems can support adaptive cruise control, gear changing systems and engine control. Many ideas are presented and explained and the ideas are valued. Furthermore, a new method for selective catalytic reduction (SCR) control using a positioning system is introduced. It is concluded that look-ahead control, where the vehicle position in relation to the upcoming road section is utilized could give better fuel efficiency, lower emissions and less brake, transmission and engine wear. In the second part of this thesis a real time test platform for predictive speed control algorithms has been developed and tested in a real truck. Previously such algorithms could only be simulated. In this thesis an algorithm which utilizes model predictive control (MPC) and dynamic programming (DP) been implemented and evaluated. An initial comparative fuel test shows a reduction in fuel consumption when the MPC algorithm is used.
115

Networked Control System Design and Parameter Estimation

Yu, Bo 29 September 2008 (has links)
Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6).<br /><br /> Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of <em>H<sub>2</sub></em> and <em>H<sub>∞</sub></em> norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed <em>H<sub>2</sub>/H<sub>&infin;</sub></em> control problem is solved under the framework of LMIs. <br /><br /> To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. <br /><br /> Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The <em>l<sub>2</sub>-l<sub>&infin;</sub></em> filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. <br /><br /> Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. <br /><br /> Finally, several open problems are listed as the future research directions.
116

Adaptive Mode Transition Control Architecture with an Application to Unmanned Aerial Vehicles

Gutierrez Zea, Luis Benigno 21 May 2004 (has links)
In this thesis, an architecture for the adaptive mode transition control of unmanned aerial vehicles (UAV) is presented. The proposed architecture consists of three levels: the highest level is occupied by mission planning routines where information about way points the vehicle must follow is processed. The middle level uses a trajectory generation component to coordinate the task execution and provides set points for low-level stabilizing controllers. The adaptive mode transitioning control algorithm resides at the lowest level of the hierarchy consisting of a mode transitioning controller and the accompanying adaptation mechanism. The mode transition controller is composed of a mode transition manager, a set of local controllers, a set of active control models, a set point filter, a state filter, an automatic trimming mechanism and a dynamic compensation filter. Local controllers operate in local modes and active control models operate in transitions between two local modes. The mode transition manager determines the actual mode of operation of the vehicle based on a set of mode membership functions and activates a local controller or an active control model accordingly. The adaptation mechanism uses an indirect adaptive control methodology to adapt the active control models. For this purpose, a set of plant models based on fuzzy neural networks is trained based on input/output information from the vehicle and used to compute sensitivity matrices providing the linearized models required by the adaptation algorithms. The effectiveness of the approach is verified through software-in-the-loop simulations, hardware-in-the-loop simulations and flight testing.
117

A Study on Architecture, Algorithms, and Applications of Approximate Dynamic Programming Based Approach to Optimal Control

Lee, Jong Min 12 July 2004 (has links)
This thesis develops approximate dynamic programming (ADP) strategies suitable for process control problems aimed at overcoming the limitations of MPC, which are the potentially exorbitant on-line computational requirement and the inability to consider the future interplay between uncertainty and estimation in the optimal control calculation. The suggested approach solves the DP only for the state points visited by closed-loop simulations with judiciously chosen control policies. The approach helps us combat a well-known problem of the traditional DP called 'curse-of-dimensionality,' while it allows the user to derive an improved control policy from the initial ones. The critical issue of the suggested method is a proper choice and design of function approximator. A local averager with a penalty term is proposed to guarantee a stably learned control policy as well as acceptable on-line performance. The thesis also demonstrates versatility of the proposed ADP strategy with difficult process control problems. First, a stochastic adaptive control problem is presented. In this application an ADP-based control policy shows an "active" probing property to reduce uncertainties, leading to a better control performance. The second example is a dual-mode controller, which is a supervisory scheme that actively prevents the progression of abnormal situations under a local controller at their onset. Finally, two ADP strategies for controlling nonlinear processes based on input-output data are suggested. They are model-based and model-free approaches, and have the advantage of conveniently incorporating the knowledge of identification data distribution into the control calculation with performance improvement.
118

Subsurface Flow Management and Real-Time Production Optimization using Model Predictive Control

Lopez, Thomas Jai 2011 December 1900 (has links)
One of the key challenges in the Oil & Gas industry is to best manage reservoirs under different conditions, constrained by production rates based on various economic scenarios, in order to meet energy demands and maximize profit. To address the energy demand challenges, a transformation in the paradigm of the utilization of "real-time" data has to be brought to bear, as one changes from a static decision making to a dynamical and data-driven management of production in conjunction with real-time risk assessment. The use of modern methods of computational modeling and simulation may be the only means to account for the two major tasks involved in this paradigm shift: (1) large-scale computations; and (2) efficient utilization of the deluge of data streams. Recently, history matching and optimization were brought together in the oil industry into an integrated and more structured approach called optimal closed-loop reservoir management. Closed-loop control algorithms have already been applied extensively in other engineering fields, including aerospace, mechanical, electrical and chemical engineering. However, their applications to porous media flow, such as - in the current practices and improvements in oil and gas recovery, in aquifer management, in bio-landfill optimization, and in CO2 sequestration have been minimal due to the large-scale nature of existing problems that generate complex models for controller design and real-time implementation. Their applicability to a realistic field is also an open topic because of the large-scale nature of existing problems that generate complex models for controller design and real-time implementation, hindering its applicability. Basically, three sources of high-dimensionality can be identified from the underlying reservoir models: size of parameter space, size of state space, and the number of scenarios or realizations necessary to account for uncertainty. In this paper we will address type problem of high dimensionality by focusing on the mitigation of the size of the state-space models by means of model-order reduction techniques in a systems framework. We will show how one can obtain accurate reduced order models which are amenable to fast implementations in the closed-loop framework .The research will focus on System Identification (System-ID) (Jansen, 2009) and Model Predictive Control (MPC) (Gildin, 2008) to serve this purpose. A mathematical treatment of System-ID and MPC as applied to reservoir simulation will be presented. Linear MPC would be studied on two specific reservoir models after generating low-order reservoir models using System-ID methods. All the comparisons are provided from a set of realistic simulations using the commercial reservoir simulator called Eclipse. With the improvements in oil recovery and reductions in water production effectively for both the cases that were considered, we could reinforce our stance in proposing the implementation of MPC and System-ID towards the ultimate goal of "real-time" production optimization.
119

Inferential Control Of Boric Acid Production System

Dervisoglu, Ozgecan 01 August 2007 (has links) (PDF)
Inferential control of boric acid production system using the reaction of colemanite with sulfuric acid in four continuously stirred tank reactors (CSTR) connected in series is aimed. In this control scheme, pH of the product is measured on-line instead of boric acid concentration for control purposes. An empirical correlation between pH and boric acid concentration is developed using the collected data in a batch reacting system in laboratory-scale and this correlation is utilized in the control system for estimator design. The transfer function model of the 4-CSTR system previously obtained is used in the MPC controller design. In the experiments done previously for the modelling of 4-CSTR system, it was observed that the reaction goes complete within the first reactor. Therefore, the control is based on the measurements of pH of the second reactor by manipulating the flow rate of sulfuric acid given to the first reactor, while the flow rate of colemanite fed to the system is considered as disturbance. The designed controller&rsquo / s performance is tested for set point tracking, disturbance rejection and robustness issues using a simulation program. It is found that, the designed controller is performing satisfactorily, using the inferential control strategy for this complex reacting system.
120

Adaptive control of real-time media applications in best-effort networks

Khariwal, Vivek 15 November 2004 (has links)
Quality of Service (QoS) in real-time media applications can be defined as the ability to guarantee the delivery of packets from source to destination over best-effort networks within some constraints. These constraints defined as the QoS metrics are end-to-end packet delay, delay jitter, throughtput, and packet losses. Transporting real-time media applications over best-effort networks, e.g. the Internet, is an area of current research. Both the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) have failed to provide the desired QoS. This research aims at developing application-level end-to-end QoS controls to improve the user-perceived quality of real-time media applications over best-effort networks, such as, the public Internet. In this research an end-to-end packet based approach is developed. The end-to- end packet based approach consists of source buffer, network simulator ns-2, destina- tion buffer, and controller. Unconstrained model predictive control (MPC) methods are implemented by the controller at the application layer. The end-to-end packet based approach uses end-to-end network measurements and predictions as feedback signals. Effectiveness of the developed control methods are examined using Matlab and ns-2. The results demonstrate that sender-based control schemes utilizing UDP at transport layer are effective in providing QoS for real-time media applications transported over best-effort networks. Significant improvements in providing QoS are visible by the reduction of packet losses and the elimination of disruptions during the playback of real-time media. This is accompanied by either a decrease or increase in the playback start-time.

Page generated in 0.0866 seconds