Spelling suggestions: "subject:"model off control"" "subject:"model oof control""
151 |
Especificação do modelo de referência em projeto de controladores multivariáveis discretosSilva, Gustavo Rodrigues Gonçalves da January 2016 (has links)
A escolha do modelo de referência é a principal tarefa a ser executada pelo projetista em um projeto de controle por modelo de referência. Uma má escolha do modelo de referência pode resultar em um desempenho de malha fechada que tem pouca semelhança com o especificado e a malha fechada pode até ser instável. Neste trabalho, esse problema será discutido no controle de plantas multivariáveis. O resultado experimental em uma planta de controle de nível de três tanques mostra uma aparentemente correta, ainda que ingênua, escolha do modelo de referência levando a um desempenho muito pobre em malha fechada. O problema é, então, analisado, expondo a ingenuidade do exemplo. Começa-se por reconhecer as restrições fundamentais impostas pelo sistema e, em seguida, deriva-se diretrizes gerais que respeitam essas restrições, para uma escolha eficaz do modelo de referência em sistemas multivariáveis. Também é proporcionada uma nova formulação para calcular o grau relativo mínimo de cada elemento do modelo de referência sem a necessidade de um modelo completo da planta. A aplicação destas orientações em simulações e na planta de três tanques ilustra sua eficácia. / The choice of the reference model is the main task to be performed by the designer in a model reference control design. A poor choice of the reference model may result in a closed-loop performance that bears no resemblance to the specifications and the closedloop may even be unstable. In this work we discuss this issue in the control of multivariable plants. Experimental results in a three tank level control plant show a seemingly correct, yet naive, choice of reference model leading to very poor closed-loop performance. The problem is then analyzed, exposing the naivete of the design example. We start by recognizing the fundamental constraints imposed by the system and then deriving general guidelines respecting these contraints for the effective choice of the reference model in multivariable systems. We also provide a novel formulation to compute the minimal relative degree of each element of the reference model without needing a complete model of the plant. The application of these guidelines to simulations and the three tank plant illustrates their effectiveness.
|
152 |
Optimization and Control for Microgrid and Power Electronic ConvertersRasouli Disfani, Vahid 16 September 2015 (has links)
The proposed dissertation research investigates Optimization and Control for Microgrid and Power Electronic Converters. The research has two major parts:
i- Microgrid Operation and Control,
ii- Power Electronic Converter Control and Optimization.
In the first part, three focuses are investigated. First, a completely distributed algorithm is developed for dc optimal power flow problem for power distribution systems as one of the necessary functions considered in unit-commitment problem in day-ahead markets. This method is derived based upon the partial primal-dual representation of the economic dispatch problem, which is finally translated to DC-OPF problem. Second, the optimal interaction between the utility and communities will be studied, due to its improtance in real-time markets. The objective of this section will be to develop an iterative agent-based algorithm for optimal utility-community control. The algorithm will consider the AC power system constraints to maintain power system stability. In this algorithm, a simplified model of microgrid is considered. In the third focus, a comprehensive model of microgrid is taken into account. The optimal operation of the microgrid considering energy storage systems and renewable energy resources is investigated. The interaction of such microgrids with the main grid to define the optimal operation of the entire embedded system is studied through two iterative methods. In the microgrid's internal problem, a moving-horizon algorithm is considered to define the optimal dispatch of all distributed energy resources while considering the time-correlated constraints of energy storage systems. A thorough analysis of the effects of the size of storage systems on energy and reserve market parameters are also performed.
In the second part, the focus of research is to develop optimal control strategies for Power Electronic Converters. A Model Predictive Control (MPC) switching method is proposed for Modular Multilevel Converters (MMC). The optimal solution of MPC problem is then represented as an optimization problem. Due to lack of efficient algorithms to seek the optimal solution, a fast algorithm will be proposed in this research. The method proposed reduces the number of possible solutions and computation efforts dramatically.
|
153 |
Process Control Applications in Microbial Fuel Cells(MFC)January 2018 (has links)
abstract: Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation are pH and potential control problems.
Most of the adaptive pH control solutions use signal-based-norms as cost functions, but their strong dependency on excitation signal properties makes them sensitive to noise, disturbances, and modeling errors. System-based-norm( H-infinity) cost functions provide a viable alternative for the adaptation as they are less susceptible to the signal properties. Two variants of adaptive pH control algorithms that use approximate H-infinity frequency loop-shaping (FLS) cost metrics are proposed in this dissertation.
A pH neutralization process with high retention time is studied using lab scale experiments and the experimental setup is used as a basis to develop a first-principles model. The analysis of such a model shows that only the gain of the process varies significantly with operating conditions and with buffering capacity. Consequently, the adaptation of the controller gain (single parameter) is sufficient to compensate for the variation in process gain and the focus of the proposed algorithms is the adaptation of the PI controller gain. Computer simulations and lab-scale experiments are used to study tracking, disturbance rejection and adaptation performance of these algorithms under different excitation conditions. Results show the proposed algorithm produces optimum that is less dependent on the excitation as compared to a commonly used L2 cost function based algorithm and tracks set-points reasonably well under practical conditions. The proposed direct pH control algorithm is integrated with the combined activated sludge anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its performance.
Analytical grade potentiostats are commonly used in MFC potential control, but, their high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation proposes an alternate low-cost($200) portable potentiostat solution. This potentiostat is tested using a ferricyanide reactor and results show it produces performance close to an analytical grade potentiostat. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
|
154 |
Etudes de commande par décomposition-coordination pour l'optimisation de la conduite de vallées hydroélectriques / Control study by decomposition coordination for the optimal supervision of a hydro-power valley.Zarate Florez, Jennifer 04 May 2012 (has links)
Une vallée hydroélectrique est constituée d'un nombre important de centrales interconnectées du fait de l'utilisation de la même ressource en eau. Pour pouvoir optimiser en temps réel sa production, il a été proposé dans cette thèse d'utiliser les méthodes associées aux systèmes à grande échelle pour développer les outils nécessaires. Cette étude de la commande globale du système a été orientée vers l'utilisation des méthodes de décomposition-coordination. Ces méthodes ont été examinées et appliquées à un cas d'étude simplifié (une partie de la vallée hydraulique) mis à disposition par EDF. Plus particulièrement, les méthodes de décomposition-coordination par les prix, ou encore par les prédictions des interactions, s'appuyant sur des commandes MPC, ont été considérées et comparées avec une commande centralisée. En vue d'une implémentation temps-réel, nous nous sommes intéressés à exprimer les problèmes d'optimisation comme des problèmes QP, pour ensuite obtenir des solutions explicites en utilisant une méthodologie de caractérisation géométrique. Nous avons proposé des formulations complètement explicites (niveau coordinateur et sous-systèmes) pour les deux méthodes. Des résultats de simulation avec des données réelles mises à disposition par EDF sont présentés. Afin de valider les méthodes conçues, une première phase d'implantation sur la plate-forme Supervision NG d'EDF permettant la communication avec un modèle de la vallée hydroélectrique (basé sur les équations de Saint Venant et la bathymétrie de la rivière), est enfin incluse dans ce mémoire. / This study is mainly about the hydroelectric production problem. What we aim to do, is to develop optimization tools for a chain of hydroelectric plants, using appropriate control methodologies. A hydroelectric valley is a large scale system, made up of interconnected plants. The study of the global control system has been focused to the use of decomposition-coordination methods. Those methods have been examined and applied to a simplified case study (a part of a hydroelectric valley) given by EDF. To be more specific, the price decomposition - coordination method and the interactions prediction method, based on MPC controls, have been considered and compared to a centralized control. Because of the need of implementation in real time, we have expressed the optimization problems as QP problems, so as to obtain explicit solutions using the geometric characterization methodology. We have proposed a completely explicit formulation (both at the coordinator level and at the subsystems level) for both methods. Simulation results with real data information given by EDF are also presented. To verify and validate the designed methods, a first step of implementation on the supervision platform NG by EDF, that allows the communication with a model of the hydroelectric valley (based on the equations of Saint Venant and on the river bathymetry) is finally also included in this thesis.
|
155 |
Commande prédictive distribuée pour la gestion de l'énergie dans le bâtiment Distributed model predictive control for energy management in building / Distributed Predictive Control for energy management in buildingsLamoudi, Mohamed Yacine 29 November 2012 (has links)
À l’heure actuelle, les stratégies de gestion de l’énergie pour les bâtiments sontprincipalement basées sur une concaténation de règles logiques. Bien que cette approcheoffre des avantages certains, particulièrement lors de sa mise en oeuvre sur des automatesprogrammables, elle peine à traiter la diversité de situations complexes quipeuvent être rencontrées (prix de l’énergie variable, limitations de puissance, capacitéde stockage d’énergie, bâtiments de grandes dimension).Cette thèse porte sur le développement et l’évaluation d’une commande prédictivepour la gestion de l’énergie dans le bâtiment ainsi que l’étude de l’embarcabilité del’algorithme de contrôle sur une cible temps-réel (Roombox - Schneider-Electric).La commande prédictive est basée sur l’utilisation d’un modèle du bâtiment ainsique des prévisions météorologiques et d’occupation afin de déterminer la séquencede commande optimale à mettre en oeuvre sur un horizon de prédiction glissant.Seul le premier élément de cette séquence est en réalité appliqué au bâtiment. Cetteséquence de commande optimale est obtenue par la résolution en ligne d’un problèmed’optimisation. La capacité de la commande prédictive à gérer des systèmes multivariablescontraints ainsi que des objectifs économiques, la rend particulièrementadaptée à la problématique de la gestion de l’énergie dans le bâtiment.Cette thèse propose l’élaboration d’un schéma de commande distribué pour contrôlerles conditions climatiques dans chaque zone du bâtiment. L’objectif est de contrôlersimultanément: la température intérieure, le taux de CO2 ainsi que le niveaud’éclairement dans chaque zone en agissant sur les équipements présents (CVC, éclairage,volets roulants). Par ailleurs, le cas des bâtiments multi-sources (par exemple:réseau électrique + production locale solaire), dans lequel chaque source d’énergie estcaractérisée par son propre prix et une limitation de puissance, est pris en compte.Dans ce contexte, les décisions relatives à chaque zone ne peuvent plus être effectuéesde façon indépendante. Pour résoudre ce problème, un mécanisme de coordinationbasé sur une décomposition du problème d’optimisation centralisé est proposé. Cettethèse CIFRE 1 a été préparée au sein du laboratoire Gipsa-lab en partenariat avecSchneider-Electric dans le cadre du programme HOMES (www.homesprogramme.com). / Currently, energy management strategies for buildings are mostly based on a concatenationof logical rules. Despite the fact that such rule based strategy can be easilyimplemented, it suffers from some limitations particularly when dealing with complexsituations. This thesis is concerned with the development and assessment ofModel Predictive Control (MPC) algorithms for energy management in buildings. Inthis work, a study of implementability of the control algorithm on a real-time hardwaretarget is conducted beside yearly simulations showing a substantial energy savingpotential. The thesis explores also the ability of MPC to deal with the diversity ofcomplex situations that could be encountered (varying energy price, power limitations,local storage capability, large scale buildings).MPC is based on the use of a model of the building as well as weather forecasts andoccupany predictions in order to find the optimal control sequence to be implementedin the future. Only the first element of the sequence is actually applied to the building.The best control sequence is found by solving, at each decision instant, an on lineoptimization problem. MPC’s ability to handle constrained multivariable systems aswell as economic objectives makes this paradigm particularly well suited for the issueof energy management in buildings.This thesis proposes the design of a distributed predictive control scheme to controlthe indoor conditions in each zone of the building. The goal is to control thefollowing simultaneously in each zone of the building: indoor temperature, indoorCO2 level and indoor illuminance by acting on all the actuators of the zone (HVAC,lighting, shading). Moreover, the case of multi-source buildings is also explored, (e.g.power from grid + local solar production), in which each power source is characterizedby its own dynamic tariff and upper limit. In this context, zone decisions can nolonger be performed independently. To tackle this issue, a coordination mechanismis proposed. A particular attention is paid to computational effectiveness of the proposedalgorithms. This CIFRE2 Ph.D. thesis was prepared within the Gipsa-lab laboratoryin partnership with Schneider-Electric in the scope of the HOMES program(www.homesprogramme.com).
|
156 |
Controle preditivo de sistemas híbridosCaetano, Anamaria de Oliveira 16 March 2011 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The industry's need to improve aspects of production such as quality and eciency meant
that techniques and devices for more ecient control were adopted in view of the dierences
that occur in systems. most systems are not only characterized by the continuous
dynamics usually applied to describe this behavior but an association with this dynamic
elements with discrete characteristics (logical). For this systems relates to the expression
hybrid systems whose dynamics processes characterize the behavior continuous real-time
system associated with a discrete event. The control of hybrid systems requires answers
in accordance with the presence of discrete event and continuous interacting that makes
control strategies increasingly sophisticated are developed. In this work, was adopted
the hybrid MLD formalism (Mixed Logical Dynamical ) for the representation of hybrid
systems using dynamic logical propositions that express such a system in the form of
linear constraints of binary variables interacting with the continuous behavior of dierential
equations. In this context, the predictive controller based on an optimal model
developed from the selected formalism is suggested as an option for the control of hybrid
systems. In this work, the qualitative modeling of discrete systems using the MLD formalism
is presented for which it is developed to check these systems to evaluate the hybrid
modeling. These techniques were applied to simple problems in chemical engineering as
systems of three tanks connected in series and a CSTR reactor with heating. In each of
the systems were made simulations coupled to qualitative models in various scenarios and
compared to the continuous model of dierential equations and their discretized version.
The action of the MPC controller for hybrid systems was studied also, developing it from
the MLD model and presenting several simulation scenarios to investigate the eects of
control over the system. Such control is developed to the l1 and l2 norms, enabling a comparison
between the two control options and the comparison between these controllers
with classics like PI. The results for the model in the MLD formalism are satisfactory and
consistent with the real behavior of the system. The control problems developed show
intervention MPC controller more ecient than the classical PI controller associated with
the control on/o mainly by the choice of variables to be manipulated. The comparison
between controllers l1-MPC and l2-MPC gives results that indicate similar control actions
for each of these controllers depending on the location of the optimal point found in
solving the optimization model for the controlled system. / A necessidade da indústria de aprimorar aspectos da produção como qualidade e eficiência fizeram com que técnicas e dispositivos de controle mais eficientes fossem adotados atendendo às diversidades que ocorrem nos sistemas. Porém, a maioria dos sistemas não caracteriza-se apenas pela dinâmica contínua geralmente aplicada a descrição de seu comportamento mas por uma associação desta dinâmica com elementos com características discretas (lógicas). A este tipo de sistemas relaciona-se a expressão sistemas híbridos que caracteriza processos cuja dinâmica associa o comportamento contínuo em tempo real de um sistema com eventos discretos. O controle de sistemas híbridos exige respostas condizentes com a presença de eventos discretos e contínuos interagindo entre si, o que faz com que estratégias de controle cada vez mais sofisticadas sejam desenvolvidas. Neste trabalho, adotou-se o formalismo híbrido MLD Mixed Logical Dynamical para a representação de sistemas híbridos dinâmicos utilizando proposições lógicas que expressam tal sistema sob a forma de restrições lineares de variáveis binárias interagindo com o comportamento contínuo de equações diferenciais. Neste contexto, o controlador preditivo baseado em um modelo desenvolvido a partir do formalismo selecionado é sugerido como uma opção para o controle de sistemas híbridos. Nesta dissertação, a modelagem qualitativa dos sistemas discretos utilizando o formalismo MLD é apresentada para a qual desenvolve-se a verificação para tais sistemas com o objetivo de avaliar a modelagem híbrida. Essas técnicas foram aplicadas em problemas da Engenharia Química como sistemas de três tanques conectados em série e um reator CSTR com aquecimento. Em cada um dos processos estudados foram feitas as simulações acopladas aos modelos qualitativos em diversos cenários e comparados ao modelo contínuo de equações diferenciais e sua versão discretizada. Estudou-se ainda a ação do controlador MPC para sistemas híbridos, desenvolvendo-o a partir do modelo MLD e apresentando diversos cenários de simulação para investigação dos efeitos do controle sobre o sistema. Tal controle é desenvolvido para as normas l 1 e l 2, possibilitando uma comparação entre as duas opções de controle além da comparação entre estes com controladores clássicos como o PI. Os resultados para o modelo no formalismo MLD são satisfatórios e condizem com o comportamento real do sistema. Os problemas de controle desenvolvidos apresentam a intervenção do controlador MPC mais eficiente que o controlador clássico PI associado ao controle liga/desliga principalmente pela possibilidade de escolha das variáveis a ser manipulada. A comparação com entre os controladores l 1-MPC e l 2- MPC permite resultados que indicam ações de controle semelhantes para cada um destes controladores em função da localização do ponto ótimo encontrado na resolução do modelo de otimização para o sistema de controlados / Mestre em Engenharia Química
|
157 |
Auditoria e diagnóstico de modelos para controladores preditivos industriaisBotelho, Viviane Rodrigues January 2015 (has links)
A crescente demanda pela melhoria operacional dos processos aliada ao desenvolvimento da tecnologia da informação tornam a utilização de controladores preditivos baseados em modelos (MPC) uma prática comum na indústria. Estes controladores estimam, a partir dos dados de planta e de um modelo do processo, uma sequência de ações de controle que levam as variáveis ao valor desejado de forma otimizada. Dessa forma, dentre os parâmetros de configuração de um MPC, a baixa qualidade do modelo é, indiscutivelmente, a mais importante fonte de degradação de seu desempenho. Este trabalho propõe uma série de metodologias para a avaliação da qualidade do modelo do controlador preditivo, as quais consideram sua velocidade em malha fechada. Tais metodologias são baseadas na filtragem dos erros de simulação a partir função nominal de sensibilidade, e possuem a capacidade de informar o impacto dos problemas de modelagem no desempenho do sistema, além de localizar as variáveis controladas que estão com tais problemas e se os mesmos são provenientes de uma discrepância no modelo ou de um distúrbio não medido. As técnicas ainda possuem a vantagem de serem independentes do setpoint, o que as torna flexível de também serem utilizadas em controladores nos quais as variáveis são controladas por faixas. A abordagem proposta foi testada em dois estudos de caso simulados, sendo eles: a Fracionadora de Óleo Pesado da Shell e a Planta de Quatro tanques Cilíndricos. As técnicas também foram avaliadas em dados de processo da Unidade de Coqueamento Retardado de uma refinaria. Os resultados indicam que as mesmas apresentam resultados coerentes, corroborando seu elevado potencial de aplicação industrial. / The growing demand for operational improvement and the development of information technology make the use of model predictive controllers (MPCs) a common practice in industry. This kind of controller uses past plant data and a process model to estimate a sequence of control actions to lead the variables to a desired value following an optimal policy. Thus, the model quality is the most important source of MPC performance degradation. This work proposes a series of methods to investigate the controller model quality taking into account its closed loop performance. The methods are based on filtering the simulation errors using the nominal sensitivity function. They are capable detect the impact of modeling problems in the controller performance, and also to locate the controlled variables that have such problems and if it is caused by a model-plant mismatch or unmeasured disturbance. The techniques have the advantage to be setpoint independent, making them flexible to be also used in MPCs with controlled variables working by range. The proposed approach was tested in two simulated case studies The Shell Heavy Oil Fractionator Process and The Quadruple-tanks Process. The methods are also evaluated in process data of the Delayed Coking Unit of a Brazilian refinery. Results indicate that the method is technically coherent and has high potential of industrial application.
|
158 |
Especificação do modelo de referência em projeto de controladores multivariáveis discretosSilva, Gustavo Rodrigues Gonçalves da January 2016 (has links)
A escolha do modelo de referência é a principal tarefa a ser executada pelo projetista em um projeto de controle por modelo de referência. Uma má escolha do modelo de referência pode resultar em um desempenho de malha fechada que tem pouca semelhança com o especificado e a malha fechada pode até ser instável. Neste trabalho, esse problema será discutido no controle de plantas multivariáveis. O resultado experimental em uma planta de controle de nível de três tanques mostra uma aparentemente correta, ainda que ingênua, escolha do modelo de referência levando a um desempenho muito pobre em malha fechada. O problema é, então, analisado, expondo a ingenuidade do exemplo. Começa-se por reconhecer as restrições fundamentais impostas pelo sistema e, em seguida, deriva-se diretrizes gerais que respeitam essas restrições, para uma escolha eficaz do modelo de referência em sistemas multivariáveis. Também é proporcionada uma nova formulação para calcular o grau relativo mínimo de cada elemento do modelo de referência sem a necessidade de um modelo completo da planta. A aplicação destas orientações em simulações e na planta de três tanques ilustra sua eficácia. / The choice of the reference model is the main task to be performed by the designer in a model reference control design. A poor choice of the reference model may result in a closed-loop performance that bears no resemblance to the specifications and the closedloop may even be unstable. In this work we discuss this issue in the control of multivariable plants. Experimental results in a three tank level control plant show a seemingly correct, yet naive, choice of reference model leading to very poor closed-loop performance. The problem is then analyzed, exposing the naivete of the design example. We start by recognizing the fundamental constraints imposed by the system and then deriving general guidelines respecting these contraints for the effective choice of the reference model in multivariable systems. We also provide a novel formulation to compute the minimal relative degree of each element of the reference model without needing a complete model of the plant. The application of these guidelines to simulations and the three tank plant illustrates their effectiveness.
|
159 |
Motion control of autonomous underwater vehicles using advanced model predictive control strategyShen, Chao 26 March 2018 (has links)
The increasing reliance on oceans, rivers and waterways in a spectrum of human activities have demonstrated the large demand for advanced marine technologies that facilitate multifarious in-water services and tasks. The autonomous underwater vehicle (AUV) is a representative marine technology which has been contributing continuously to many ocean-related fields. An elaborate control system is essential to AUVs. However, AUVs present difficult control system design problems due to their nonlinear dynamics, the unpredictable environment and the poor knowledge about the hydrodynamic coupling of the vehicle degrees of freedom. When designing the motion controller, the practical constraints on the AUV system such as limited perceiving, computing and actuating capabilities should also be respected.
The model predictive control (MPC) is an advanced control technology that leverages optimization to calculate the control command. Thanks to the optimization nature, MPC can conveniently handle the complex nonlinearity in system dynamics as well as the state and control constraints. MPC takes the receding horizon control paradigm which gains satisfactory robustness against model uncertainties and external disturbances. Therefore, MPC is an ideal candidate for solving the AUV motion control problems. On the other hand, since the optimization is solved by iterative numerical algorithms, the obtained control signal is an implicit function of the system state, which complicates the characterization of the closed-loop properties. Moreover, the nonlinear system dynamics makes the online optimization nonlinear programming (NLP) problems. The high computational complexity may cause an issue on the real-time control for embedded platforms with limited computing resources. In order to push the advanced MPC technology towards real-world AUV applications, this PhD dissertation is concerned with fundamental AUV motion control problems and attempts to address the aforementioned challenges and provide novel solutions.
This dissertation proceeds with Chapter 1 by providing state-of-the-art introductions to related research areas. The mathematical model used for the AUV motion control is elaborated in Chapter 2. In Chapter 3, we consider the AUV navigation and control problem in constrained workspace. A unified receding horizon optimization framework consisting of the dynamic path planning and the nonlinear model predictive control (NMPC) tracking control is developed. Although the NMPC tracking controller well accommodates the practical constraints on the AUV system, it presents a brand new design philosophy compared with the existing control systems that are implemented on real AUVs. Since the existing AUV control systems are reliable controllers, AUV practitioners tend not to fully replace them but to improve the control performance by adding features. By considering this, in Chapter 4, we develop the Lyapunov-based model predictive control (LMPC) scheme which builds on the existing AUV control system and invoke online optimization to improve the control performance. Chapter 5 focuses on the path following (PF) problem. Unlike the trajectory tracking control which equally emphasizes the spatial and temporal control objectives, the PF control often prioritizes the path convergence over the speed assignment. To incorporate this objective prioritization into the controller design, a novel multi-objective model predictive control (MOMPC) scheme is developed. While the MPC technique provides several salient features (e.g., optimality, constraints handling, objective prioritization, robustness, etc.), those features come at a price: a computational bottleneck is formed by the heavy burden of solving online optimizations in real time. To explicitly address this issue, in Chapter 6, the computational complexity of the MPC algorithms is particularly emphasized. Two novel strategies which potentially alleviate the computational burden of the MPC-based AUV tracking control are proposed. In Chapter 7, some conclusive remarks are provided and a few avenues for future research are identified. / Graduate
|
160 |
Controle preditivo robusto de processos integradores e instáveis com tempos mortos. / Robust model predictive control of integrating and unstable time delay processes.Marcio André Fernandes Martins 05 September 2014 (has links)
O projeto de estratégias de controle preditivo (MPC) com estabilidade garantida, que incorpora explicitamente a incerteza de modelo na formulação de controle, ainda permanece uma questão em aberto na literatura, embora uma ampla teoria já tenha sido desenvolvida para a síntese de algoritmos MPC robustamente estáveis. Em verdade, as soluções existentes para o problema de MPC robusto estão longe de uma etapa aceitável de implementação prática, principalmente se o sistema de processo é composto de modos integradores ou instáveis, e também apresenta atrasos de tempo (tempos mortos) entre suas variáveis de entrada e saída. Sob esta perspectiva, o objetivo principal desta tese é desenvolver uma estrutura de síntese de controladores MPC com estabilidade robusta garantida para sistemas de processo com as características integradoras ou instáveis, assim como tempos mortos entre as variáveis. Particularmente, três diferentes estratégias de MPC robusto são desenvolvidas neste trabalho. As duas primeiras referem-se a sistemas integradores com tempos mortos: o primeiro algoritmo é baseado em uma formulação de controle em dois passos, enquanto o segundo é posto como um problema de otimização de controle em um passo e a representação de modelo em variáveis de estado é mais geral do que aquela adotada na formulação do primeiro método. A terceira estratégia proposta focaliza os sistemas instáveis com tempos mortos através de uma formulação de controle em um passo. Ademais, visando o caso de implementação prática, os controladores desenvolvidos compreende os seguintes aspectos: (i) as leis de controle livre de erro permanente são obtidas sem a necessidade de incluir uma camada de otimização adicional de cálculo de estados estacionários, devido à formulação adequada de modelos em espaço de estados na forma incremental das entradas, os quais são derivados de expressões analíticas de resposta ao degrau do sistema de processo; (ii) a incerteza de todos os parâmetros do modelo, e.g. ganhos, constantes de tempo, atrasos de tempo, é considerada na formulação do problema; (iii) as provas de estabilidade robusta segundo Lyapunov são realizadas de uma forma intuitiva através da imposição de restrições terminais de igualdade e restrições de contração de custo; (iv) a inclusão adequada de variáveis de folga, que não comprometem as propriedades estabilizantes dos controladores, assegura que os problemas de otimização são sempre viáveis; (v) integração estável com camada de otimização em tempo real, visto que os controladores são projetados de tal forma a rastrear targets ótimos para algumas entradas e saídas do processo, mantendo as variáveis remanescentes dentro de faixas pré-definidas, ao invés de set-points xos. Exemplos de simulação típicos da indústria de processo são explorados para ilustrar as potenciais utilidades dos métodos propostos e demonstrar que eles podem ser aplicados em casos reais. / The design of stable model predictive control (MPC) strategies that explicitly incorporate the model uncertainty into the control formulation still remains an open issue, although a rich theory has been developed to the synthesis of robustly stabilizing MPC schemes. In fact, the existing solutions to the robust MPC problem seem far from an acceptable stage of practical imple mentations, chiey when the process system is composed of integrating and unstable poles, as well as time delays between its input and output variables. Within this perspective, the ultimate goal of this thesis is to develop a new framework for robust MPC synthesis which guarantees closed-loop stability of integrating and unstable time delay processes. On this subject, three different robust MPC strategies are developed. The two rst concerns on integrating time delay processes; the former is based on a two-step control formulation, whereas the latter is posed as a one-step control optimization problem and state-space model description is more general than that adopted in the former formulation. The third proposed strategy focuses on one-step control formulation-based unstable time delay processes. Aiming at practical implementation purposes, the controllers proposed herein comprise the following aspects: (i) the offset free control laws are obtained without the need to include an additional steady-state calculation op timization layer due to the enclosure of proper state-space models in the incremental form of the inputs, which are derived of analytical expressions of step response of the process system; (ii) the uncertainty of all model parameters, e.g. gains, time constants, time delays and so on, is considered in the problem formulation; (iii) the proofs of robust Lyapunov stability are easily carried out of an intuitive way by imposing terminal equality constraints and cost-contracting constraints; (iv) the suitable inclusion of slack variables, which does not commit the stabil ity properties of the controllers, ensure that the proposed optimization problems are always feasible; (v) stable integration with real-time optimization layer, seeing as the controllers are designed to work in the optimum target tracking scheme where they should drive the process to the optimum operating point, while maintaining the remaining inputs and outputs inside pre dened zones instead of xed set-points. Simulation examples typical of the process industry are exploited to illustrate the helpfulness of the proposed control methods and demonstrate that they can be implemented in real applications.
|
Page generated in 0.1053 seconds