21 |
Aplicação estruturada de dados de redes sociais na modelagem de instrumentos de apoio às decisões de concessão de crédito / Social networks structured data application: modelins support tools for credit acquisitions decisionsFattibene, Marcos 27 January 2015 (has links)
Made available in DSpace on 2016-06-02T19:53:33Z (GMT). No. of bitstreams: 1
FATTIBENE_Marcos_2015.pdf: 1035875 bytes, checksum: 9f4308478818fe20ad4a239e96c1bb67 (MD5)
Previous issue date: 2015-01-27 / The credit analysis for individuals has traditionally relied on three pillars: documentary proof of income and residence; refers to negative credit bureaus as SERASA and SCPC and the use of forecasting models based on the hypothesis that similar profiles in the future will reproduce the same credit behavior of the past, such as the "credit scores" (HAND; HENLEY, 2007) . This approach has been adequate, while being susceptible to moments of economic crisis or to fast profile changing of the target market, as occurred in the U.S. subprime in 2008. This study aims to point out ways to use Social Networks informational content, where individuals express and record their opinions, preferences, and especially get evident their network of relationships, in the credit analysis context. It was made evident the feasibility to investigate the assumption that an individual's proximity to other appropriate profile payers, or vice versa, influences the repayment rate. To illustrate such a conclusion, a real social network, enriched with credit data obtained by statistical simulation, was used. Three models of data weighting and three other based on multiple linear regression models were developed. In general the results were not statistically significant, by need to use a non-brazilian social network, as well synthetic data bureau score, since real information was not available in this country. It was shown a way to investigate the hypothesis that the informational content of a social network may generate greater efficiency into credit analysis when added to decision-making, operational and control systems of this segment. / A análise de crédito para pessoas físicas tem tradicionalmente se apoiado em três pilares: comprovação documental de renda e de residência; consulta a birôs negativos de crédito, como SERASA Experian e SCPC e a utilização de modelos de projeção baseados na hipótese que perfis semelhantes reproduzirão no futuro o comportamento de crédito do passado, como por exemplo, os credit scores (HAND ; HENLEY, 2007). Tal abordagem tem se mostrado adequada, sendo, entretanto suscetível a momentos de crise econômica ou mudança rápida do perfil do mercado alvo, a exemplo do ocorrido no mercado imobiliário dos EUA no ano de 2008. O presente trabalho propõe-se indicar alternativas para a utilização do teor informacional presente nas Redes Sociais, onde os indivíduos registram suas opiniões, preferências e especialmente evidenciam sua rede de relacionamentos, no contexto da análise de risco de crédito. Evidenciaram-se formas de averiguação da premissa que proximidade de um indivíduo a outros com perfil de bons pagadores, ou vice-versa, influencia a taxa de adimplência. Para se ilustrar tais sugestões, foi utilizada uma rede social real, enriquecida com dados de crédito obtidos por simulação estatística. Foram elaborados três modelos de ponderação de dados e três modelos baseados em regressão linear múltipla. Em geral os resultados não foram estatisticamente significantes, dada a necessidade de uso de rede social estrangeira como também da geração de dados sintéticos de score de birô de crédito, dada a indisponibilidade de informações reais no País. Porém, ficou evidenciada a viabilidade da averiguação da hipótese de que o conteúdo informacional contido em redes sociais pode ampliar a eficiência do sistema de análise de crédito, se incorporado aos sistemas decisórios, operativos e de controle.
|
22 |
Detecção de erros planta-modelo em sistemas de controle preditivo (MPC) utilizando técnicas de informação mútua / Detecting plant-model mismatch in predictive control systems (MPC) using mutual information techniquesCruz, Diego Déda Gonçalves Brito 08 March 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Model predictive control (MPC) strategies have become the standard for advanced
control applications in the process industry. Significant benefits are generated from the
MPC's capacity to ensure that the plant operates within its constraints more profitably.
However, like any controller, after some time under operation, MPCs rarely function as
when they were initially designed. A large percentage of performance degradation of
MPC is associated with the deterioration of model that controller uses to predict process
outputs and calculate inputs. The objective of the present work is implementation of
mathematical methods that can be used to detect model-plant mismatch in linear and nonlinear
MPC systems. In this work, techniques based on cross correlation, partial
correlation and mutual information are implemented and tested by numerical simulation
in case studies characteristic of the petrochemical industry, represented by linear and
nonlinear models, operating under MPC control. The results obtained through the
applying the techniques are analyzed and compared as to their efficiency is not intended
to offer their potential for real industrial applications. / Estratégias de controle preditivo (MPC) têm-se tornado o padrão para aplicações de
controle avançado na indústria de processos. Os benefícios significativos são gerados a
partir da habilidade do controlador MPC de assegurar que a planta opere dentro das
restrições de forma mais lucrativa. Porém, como todo controlador, depois de algum tempo
em operação, os MPCs raramente funcionam como quando foram inicialmente
projetados. Uma grande porcentagem da degradação do desempenho dos controladores
MPC está associada à deterioração do modelo que o controlador usa para fazer a predição
das saídas do processo e calcular as entradas. O objetivo do presente trabalho é a
implementação de métodos matemáticos que possam ser utilizados para a detecção de
erros planta-modelo em sistemas de controle MPC lineares e não lineares. Neste trabalho,
técnicas baseadas em correlação cruzada, correlação parcial e informação mútua são
implementadas e testadas por simulação numérica em estudos de caso característicos da
indústria petroquímica, representados por modelos lineares e não lineares, operando sob
controle MPC. Os resultados obtidos através da aplicação das técnicas são analisados e
comparados quanto à sua eficiência no objetivo proposto avaliando seu potencial para
aplicações industriais reais.
|
23 |
Análise de dados longitudinais para variáveis bináriasRodrigues, José Tenylson Gonçalves 05 March 2009 (has links)
Made available in DSpace on 2016-06-02T20:06:02Z (GMT). No. of bitstreams: 1
2447.pdf: 2730026 bytes, checksum: 0c7b575bbfeb3fed2fc6c929b9785516 (MD5)
Previous issue date: 2009-03-05 / Financiadora de Estudos e Projetos / The objective of this work is to present techniques of regression analysis for longitudinal data when the response variable is binary. Initially, there is a review of generalized linear models, marginal models, transition models, mixed models, and logistic regression methods of estimation, which will be necessary for the development of work. In addition to the methods of estimation, some structures of correlation will be studied in an attempt to capture the intra-individual serial dependence over time. These methods were applied in two situations, one where the response variable is continuous and normal distribution, and another when the response variable has the Bernoulli distribution. It was also sought to explore and present techniques for selection of models and diagnostics for the two cases. Finally, an application of the above methodology will be presented using a set of real data. / O objetivo deste trabalho é apresentar técnicas de análise de regressão para dados longitudinais quando a variável resposta é binária. Inicialmente, é feita uma revisão sobre modelos lineares generalizados, modelos marginais, modelos de transição, modelos mistos, regressão logística e métodos de estimação, pois serão necessários para o desenvolvimento do trabalho. Além dos métodos de estimação, algumas estruturas de correlação serão estudadas, na tentativa de captar a dependência serial intra-indivíduo ao longo do tempo. Estes métodos foram aplicados em duas situações; uma quando a variável resposta é contínua, e se assume ter distribuição normal, e a outra quando a variável resposta assume ter distribuição de Bernoulli. Também se procurou pesquisar e apresentar técnicas de seleção de modelos e de diagnósticos para os dois casos. Ao final, uma aplicação com a metodologia pesquisada será apresentada utilizando um conjunto de dados reais.
|
Page generated in 0.0846 seconds