Spelling suggestions: "subject:"modelos lineares (estatisticamente)""
41 |
Quantile regression for mixed-effects models = Regressão quantílica para modelos de efeitos mistos / Regressão quantílica para modelos de efeitos mistosGalarza Morales, Christian Eduardo, 1988- 27 August 2018 (has links)
Orientador: Víctor Hugo Lachos Dávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T06:40:31Z (GMT). No. of bitstreams: 1
GalarzaMorales_ChristianEduardo_M.pdf: 5076076 bytes, checksum: 0967f08c9ad75f9e7f5df339563ef75a (MD5)
Previous issue date: 2015 / Resumo: Os dados longitudinais são frequentemente analisados usando modelos de efeitos mistos normais. Além disso, os métodos de estimação tradicionais baseiam-se em regressão na média da distribuição considerada, o que leva a estimação de parâmetros não robusta quando a distribuição do erro não é normal. Em comparação com a abordagem de regressão na média convencional, a regressão quantílica (RQ) pode caracterizar toda a distribuição condicional da variável de resposta e é mais robusta na presença de outliers e especificações erradas da distribuição do erro. Esta tese desenvolve uma abordagem baseada em verossimilhança para analisar modelos de RQ para dados longitudinais contínuos correlacionados através da distribuição Laplace assimétrica (DLA). Explorando a conveniente representação hierárquica da DLA, a nossa abordagem clássica segue a aproximação estocástica do algoritmo EM (SAEM) para derivar estimativas de máxima verossimilhança (MV) exatas dos efeitos fixos e componentes de variância em modelos lineares e não lineares de efeitos mistos. Nós avaliamos o desempenho do algoritmo em amostras finitas e as propriedades assintóticas das estimativas de MV através de experimentos empíricos e aplicações para quatro conjuntos de dados reais. Os algoritmos SAEMs propostos são implementados nos pacotes do R qrLMM() e qrNLMM() respectivamente / Abstract: Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation for non-normal error distributions. Compared to the conventional mean regression approach, quantile regression (QR) can characterize the entire conditional distribution of the outcome variable and is more robust to the presence of outliers and misspecification of the error distribution. This thesis develops a likelihood-based approach to analyzing QR models for correlated continuous longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical representation of the ALD, our classical approach follows the stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood (ML) estimates of the fixed-effects and variance components in linear and nonlinear mixed effects models. We evaluate the finite sample performance of the algorithm and the asymptotic properties of the ML estimates through empirical experiments and applications to four real life datasets. The proposed SAEMs algorithms are implemented in the R packages qrLMM() and qrNLMM() respectively / Mestrado / Estatistica / Mestre em Estatística
|
42 |
Distribuições misturas de escala skew-normal : estimação e diagnostico em modelos lineares / Scale mixtures of skew-normal distribuitions : estimation and diagnostics for linear modelsZeller, Camila Borelli 14 August 2018 (has links)
Orientadores: Filidor E. Vilca Labra, Victor Hugo Lachos Davila / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T22:06:24Z (GMT). No. of bitstreams: 1
Zeller_CamilaBorelli_D.pdf: 2738820 bytes, checksum: d40d3df77a4b5d44de0f48a8f8afed01 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho, estudamos alguns aspectos de estimação e diagnóstico de influência local (Cook, 1986) em modelos lineares, especificamente no modelo de regressão linear, no modelo linear misto e no modelo de Grubbs sob a classe de distribuições assimétricas misturas de escala skew-normal (SMSN) (Branco & Dey, 2001). Esta família de distribuições tem como membros particulares as versões simétrica e assimétrica das distribuições t-Student, slash e normal contaminada, todas com caudas mais pesadas que a distribuição normal, A estimação dos parâmetros será via o algoritmo EM (Dempster et al, 1977) e a análise de diagnóstico será baseada na técnica de dados aumentados que usa a esperança condicional da função log-verossimilhança dos dados aumentados (função-Q) proveniente do algoritmo EM, como proposta por Zhu & Lee (2001) e Lee & Xu (2004). Assim, pretendemos contribuir positivamente para desenvolvimento da área dos modelos lineares, estendendo alguns resultados encontrados na literatura, por exemplo, Pinheiro et al (2001), Arellano-Valle et aí (2005), Osório (2006), Montenegro et al (2009a), Montenegro et al (2009b), Osório et al (2009), Lachos et aí (2010), entre outros. / Abstract: In this work, we study some aspects of the estimation and the diagnostics based on the local influence (Cook, 1986) in linear models under the class of scale mixtures of the skew-normal (SMSN) distribution, as proposed by Branco & Dey (2001). Specifically, we consider the linear regression model, the linear mixed model and the Grubbs' measurement error model. The SMSN class of distributions provides a useful generalization of the normal and the skew-normal distributions since it covers both the asymmetric and heavy-tailed distributions such as the skew-t, the skew-slash, the skew-contaminated normal, among others. The local influence analysis will be based on the conditional expectation of the complete-data log-likelihood function (function-Q) from the EM algorithm (Dempster et al, 1977) ), as proposed by Zhu & Lee (2001) and Lee & Xu (2004). We believe that the results of our work have contributed positively to the development of this area of linear models, since we have extended some results from the works of Pinheiro et al. (2001), Arellano-Valle et al. (2005), Osorio (2006), Montenegro et al. (2009a), Montenegro et al. (2009b), Osorio et al. (2009), Lachos et al. (2010), among others. / Doutorado / Método Estatístico / Doutor em Estatística
|
43 |
Modelo de regressão linear mistura de escala normal com ponto de mudança : estimação e diagnóstico / Scale mixture of normal regression linear regression model with change point : estimation and diagnosticsHuaira Contreras, Carlos Alberto, 1971- 25 August 2018 (has links)
Orientador: Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T19:08:47Z (GMT). No. of bitstreams: 1
HuairaContreras_CarlosAlberto_M.pdf: 2748699 bytes, checksum: fc8d02e2b19e638936faea1dec0b8ddc (MD5)
Previous issue date: 2014 / Resumo: Modelos lineares são frequentemente usados em estatística para descrever a relação entre uma variável resposta e uma ou mais variáveis explicativas, onde geralmente os erros são assumidos como normalmente distribuídos. Além disso, em modelos de regressão linear assume-se que o mesmo modelo linear é válido para todo o conjunto de dados. O modelo pode mudar após um ponto específico e assim um modelo linear com um ponto de mudança poderá ser apropriado para o conjunto de dados. O principal objetivo deste trabalho é estudar alguns aspectos de estimação e análise de diagnóstico em modelos de regressão linear com ponto de mudança sob distribuições de mistura de escala normal. A análise de diagnóstico é baseada nos trabalhos de Cook (1986) e Zhu & Lee (2001). Os resultados obtidos representam uma extensão de alguns resultados apresentados na literatura, ver por exemplo Chen (1998) e Osorio & Galea (2005). Finalmente, estudos de simulação através de simulações Monte Carlo são realizados e exemplos numéricos são apresentados para ilustrar os resultados propostos / Abstract: Linear models are widely used in statistics to describe the relationship between a response variable and one or more explanatory variables, where usually it is assumed the errors are normally distributed. Moreover, in linear regression model is assumed that the same linear model holds for the whole data set, but this is not always valid. The model may change after a specific point, and so a linear model with a change point would be appropriate for data set. The main objective of work is to study some aspect of estimation and analysis of diagnostics in the regression linear with change point model under scale mixture of normal distributions. The analysis of diagnostics is based on the works of Cook (1986) and Zhu & Lee (2001). The results obtained represent a extension of some results obtained in the literature; see for example Chen (1998) and Osorio & Galea (2005). Finally, simulation studies are investigated through Monte Carlo simulations and numerical examples are presented to illustrate the proposed results / Mestrado / Estatistica / Mestre em Estatística
|
Page generated in 0.1073 seconds