• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 3
  • Tagged with
  • 100
  • 100
  • 100
  • 81
  • 81
  • 77
  • 28
  • 24
  • 22
  • 21
  • 17
  • 17
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Redes Bayesianas aplicadas à análise do risco de crédito. / Bayesian networks applied to the anilysis of credit risk.

Karcher, Cristiane 26 February 2009 (has links)
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao crédito se tornar inadimplente, em determinado período, baseadas em suas informações pessoais e financeiras. Neste trabalho, a técnica proposta em Credit Scoring é Redes Bayesianas (RB) e seus resultados foram comparados aos da Regressão Logística. As RB avaliadas foram as Bayesian Network Classifiers, conhecidas como Classificadores Bayesianos, com seguintes tipos de estrutura: Naive Bayes, Tree Augmented Naive Bayes (TAN) e General Bayesian Network (GBN). As estruturas das RB foram obtidas por Aprendizado de Estrutura a partir de uma base de dados real. Os desempenhos dos modelos foram avaliados e comparados através das taxas de acerto obtidas da Matriz de Confusão, da estatística Kolmogorov-Smirnov e coeficiente Gini. As amostras de desenvolvimento e de validação foram obtidas por Cross-Validation com 10 partições. A análise dos modelos ajustados mostrou que as RB e a Regressão Logística apresentaram desempenho similar, em relação a estatística Kolmogorov- Smirnov e ao coeficiente Gini. O Classificador TAN foi escolhido como o melhor modelo, pois apresentou o melhor desempenho nas previsões dos clientes maus pagadores e permitiu uma análise dos efeitos de interação entre variáveis. / Credit Scoring Models are used to estimate the insolvency probability of a customer, in a period, based on their personal and financial information. In this text, the proposed model for Credit Scoring is Bayesian Networks (BN) and its results were compared to Logistic Regression. The BN evaluated were the Bayesian Networks Classifiers, with structures of type: Naive Bayes, Tree Augmented Naive Bayes (TAN) and General Bayesian Network (GBN). The RB structures were developed using a Structure Learning technique from a real database. The models performance were evaluated and compared through the hit rates observed in Confusion Matrix, Kolmogorov-Smirnov statistic and Gini coefficient. The development and validation samples were obtained using a Cross-Validation criteria with 10-fold. The analysis showed that the fitted BN models have the same performance as the Logistic Regression Models, evaluating the Kolmogorov-Smirnov statistic and Gini coefficient. The TAN Classifier was selected as the best BN model, because it performed better in prediction of bad customers and allowed an interaction effects analysis between variables.
12

Um aplicativo shiny para modelos lineares generalizados / A shiny app to perform generalized linear models

Saavedra, Cayan Atreio Portela Bárcena 01 October 2018 (has links)
Recentes avanços tecnológicos e computacionais trouxeram alternativas que acarretaram em mudanças na forma com que se faz análises e visualizações de dados. Uma dessas mudanças caracteriza-se no uso de plataformas interativas e gráficos dinâmicos para a realização de tais análises. Desta maneira, análises e visualizações de dados não se limitam mais a um ambiente estático, de modo que, explorar a interatividade pode possibilitar um maior leque na investigação e apresentação dos dados. O presente trabalho tem como objetivo propor um aplicativo interativo, de fácil uso e interface amigável, que viabilize estudos, análises descritivas e ajustes de modelos lineares generalizados. Este aplicativo é feito utilizando o pacote shiny no ambiente R de computação estatística com a proposta de atuar como ferramenta de apoio para a pesquisa e ensino da estatística. Usuários sem afinidade em programação podem explorar os dados e realizar o ajuste de modelos lineares generalizados sem digitar uma linha código. Em relação ao ensino, a dinâmica e interatividade do aplicativo proporcionam ao aluno uma investigação descomplicada de métodos envolvidos, tornando mais fácil a assimilação de conceitos relacionados ao tema. / Recent technological and computational advances have brought alternatives that have led to changes in the way data analyzes and visualizations are done. One of these changes is characterized by the use of interactive platforms and dynamic graphics to carry out such analyzes. In this way, data analyzes and visualizations are no longer limited to a static environment, so exploring this dynamic interactivity can enable a wider range of data exploration and presentation. The present work aims to propose an interactive application, easy to use and with user-friendly interface, which enables studies and descriptive analysis and fit generalized linear models. This application is made using the shiny package in the R environment of statistical computing. The purpose of the application is to act as a support tool for statistical research and teaching. Users with no familiarity in programming can explore the data and perform the fit of generalized linear models without typing a single code line. Regarding teaching, the dynamics and interactivity of the application gives the student an uncomplicated way to investigate the methods involved, making it easier to assimilate concepts related to the subject.
13

Diretrizes para aplicação de inferência Bayesiana aproximada para modelos lineares generalizados e dados georreferenciados / Approximate Bayesian inference guidelines for generalized linear models and georeferenced data

Frade, Djair Durand Ramalho 15 August 2018 (has links)
Neste trabalho, exploramos e propusemos diretrizes para a análise de dados utilizando o método Integrated Nested Laplace Approxímation - INLA para os modelos lineares generalizados (MLG\'s) e modelos baseados em dados georreferenciados. No caso dos MLG\'s, verificou-se o impacto do método de aproximação utilizado para aproximar a distribuição a posteriori conjunta. Nos dados georreferenciados, avaliou-se e propôs-se diretrizes para construção das malhas, passo imprescindível para obtenção de resultados mais precisos. Em ambos os casos, foram realizados estudos de simulação. Para selecionar os melhores modelos, foram calculadas medidas de concordância entre as observações e os valores ajustados pelos modelos, por exemplo, erro quadrático médio e taxa de cobertura. / In this work, we explore and propose guidelines for data analysis using the Integrated Nested Laplace Approximation (INLA) method for generalized linear models (GLM) and models based on georeferenced data. In the case of GLMs, the impact of the approximation method used to approximate the a posteriori joint distribution was verified. In the georeferenced data, we evaluated and proposed guidelines for the construction of the meshes, an essential step for obtaining more precise results. In both cases, simulation studies were performed. To select the best models, agreement measures were calculated between observations and models, for example, mean square error and coverage rate.
14

Implementação em R de modelos de regressão binária com ligação paramétrica / R implementation of binary regression models with parametric link

Santos, Bernardo Pereira dos 27 February 2013 (has links)
A análise de dados binários é usualmente feita através da regressão logística, mas esse modelo possui limitações. Modificar a função de ligação da regressão permite maior flexibilidade na modelagem e diversas propostas já foram feitas nessa área. No entanto, não se sabe de nenhum pacote estatístico capaz de estimar esses modelos, o que dificulta sua utilização. O presente trabalho propõe uma implementação em R de quatro modelos de regressão binária com função de ligação paramétrica usando tanto a abordagem frequentista como a Bayesiana. / Binary data analysis is usually conducted with logistic regression, but this model has limitations. Modifying the link function allows greater flexibility in modelling and several proposals have been made on the field. However, to date there are no packages capable of estimating these models imposing some difficulties to utilize them. The present work develops an R implementation of four binary regression models with parametric link functions in both frequentist and Bayesian approaches.
15

Um aplicativo shiny para modelos lineares generalizados / A shiny app to perform generalized linear models

Cayan Atreio Portela Bárcena Saavedra 01 October 2018 (has links)
Recentes avanços tecnológicos e computacionais trouxeram alternativas que acarretaram em mudanças na forma com que se faz análises e visualizações de dados. Uma dessas mudanças caracteriza-se no uso de plataformas interativas e gráficos dinâmicos para a realização de tais análises. Desta maneira, análises e visualizações de dados não se limitam mais a um ambiente estático, de modo que, explorar a interatividade pode possibilitar um maior leque na investigação e apresentação dos dados. O presente trabalho tem como objetivo propor um aplicativo interativo, de fácil uso e interface amigável, que viabilize estudos, análises descritivas e ajustes de modelos lineares generalizados. Este aplicativo é feito utilizando o pacote shiny no ambiente R de computação estatística com a proposta de atuar como ferramenta de apoio para a pesquisa e ensino da estatística. Usuários sem afinidade em programação podem explorar os dados e realizar o ajuste de modelos lineares generalizados sem digitar uma linha código. Em relação ao ensino, a dinâmica e interatividade do aplicativo proporcionam ao aluno uma investigação descomplicada de métodos envolvidos, tornando mais fácil a assimilação de conceitos relacionados ao tema. / Recent technological and computational advances have brought alternatives that have led to changes in the way data analyzes and visualizations are done. One of these changes is characterized by the use of interactive platforms and dynamic graphics to carry out such analyzes. In this way, data analyzes and visualizations are no longer limited to a static environment, so exploring this dynamic interactivity can enable a wider range of data exploration and presentation. The present work aims to propose an interactive application, easy to use and with user-friendly interface, which enables studies and descriptive analysis and fit generalized linear models. This application is made using the shiny package in the R environment of statistical computing. The purpose of the application is to act as a support tool for statistical research and teaching. Users with no familiarity in programming can explore the data and perform the fit of generalized linear models without typing a single code line. Regarding teaching, the dynamics and interactivity of the application gives the student an uncomplicated way to investigate the methods involved, making it easier to assimilate concepts related to the subject.
16

Implementação em R de modelos de regressão binária com ligação paramétrica / R implementation of binary regression models with parametric link

Bernardo Pereira dos Santos 27 February 2013 (has links)
A análise de dados binários é usualmente feita através da regressão logística, mas esse modelo possui limitações. Modificar a função de ligação da regressão permite maior flexibilidade na modelagem e diversas propostas já foram feitas nessa área. No entanto, não se sabe de nenhum pacote estatístico capaz de estimar esses modelos, o que dificulta sua utilização. O presente trabalho propõe uma implementação em R de quatro modelos de regressão binária com função de ligação paramétrica usando tanto a abordagem frequentista como a Bayesiana. / Binary data analysis is usually conducted with logistic regression, but this model has limitations. Modifying the link function allows greater flexibility in modelling and several proposals have been made on the field. However, to date there are no packages capable of estimating these models imposing some difficulties to utilize them. The present work develops an R implementation of four binary regression models with parametric link functions in both frequentist and Bayesian approaches.
17

Redes Bayesianas aplicadas à análise do risco de crédito. / Bayesian networks applied to the anilysis of credit risk.

Cristiane Karcher 26 February 2009 (has links)
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao crédito se tornar inadimplente, em determinado período, baseadas em suas informações pessoais e financeiras. Neste trabalho, a técnica proposta em Credit Scoring é Redes Bayesianas (RB) e seus resultados foram comparados aos da Regressão Logística. As RB avaliadas foram as Bayesian Network Classifiers, conhecidas como Classificadores Bayesianos, com seguintes tipos de estrutura: Naive Bayes, Tree Augmented Naive Bayes (TAN) e General Bayesian Network (GBN). As estruturas das RB foram obtidas por Aprendizado de Estrutura a partir de uma base de dados real. Os desempenhos dos modelos foram avaliados e comparados através das taxas de acerto obtidas da Matriz de Confusão, da estatística Kolmogorov-Smirnov e coeficiente Gini. As amostras de desenvolvimento e de validação foram obtidas por Cross-Validation com 10 partições. A análise dos modelos ajustados mostrou que as RB e a Regressão Logística apresentaram desempenho similar, em relação a estatística Kolmogorov- Smirnov e ao coeficiente Gini. O Classificador TAN foi escolhido como o melhor modelo, pois apresentou o melhor desempenho nas previsões dos clientes maus pagadores e permitiu uma análise dos efeitos de interação entre variáveis. / Credit Scoring Models are used to estimate the insolvency probability of a customer, in a period, based on their personal and financial information. In this text, the proposed model for Credit Scoring is Bayesian Networks (BN) and its results were compared to Logistic Regression. The BN evaluated were the Bayesian Networks Classifiers, with structures of type: Naive Bayes, Tree Augmented Naive Bayes (TAN) and General Bayesian Network (GBN). The RB structures were developed using a Structure Learning technique from a real database. The models performance were evaluated and compared through the hit rates observed in Confusion Matrix, Kolmogorov-Smirnov statistic and Gini coefficient. The development and validation samples were obtained using a Cross-Validation criteria with 10-fold. The analysis showed that the fitted BN models have the same performance as the Logistic Regression Models, evaluating the Kolmogorov-Smirnov statistic and Gini coefficient. The TAN Classifier was selected as the best BN model, because it performed better in prediction of bad customers and allowed an interaction effects analysis between variables.
18

Modelos lineares generalizados bayesianos para dados longitudinais / Bayesian generalized linear models for longitudinal data

Monfardini, Frederico [UNESP] 19 February 2016 (has links)
Submitted by FREDERICO MONFARDINI null (fred.monf@gmail.com) on 2016-05-04T01:21:27Z No. of bitstreams: 1 DISSERTAÇÃO - FREDERICO.pdf: 1083790 bytes, checksum: e190391e7f59e12ce3b3f062297293e5 (MD5) / Rejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-05-06T14:24:35Z (GMT) / Submitted by FREDERICO MONFARDINI null (fred.monf@gmail.com) on 2016-05-11T01:12:32Z No. of bitstreams: 1 DISSERTAÇÃO - FREDERICO.pdf: 979406 bytes, checksum: 75d1f03b99c1e8e3627b3ee7b3776361 (MD5) / Rejected by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: O mês informado na capa e contra-capa do documento estão diferentes da data de defesa informada na folha de aprovação. Corrija estas informações no arquivo PDF e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-05-13T13:14:09Z (GMT) / Submitted by FREDERICO MONFARDINI null (fred.monf@gmail.com) on 2016-05-16T04:01:38Z No. of bitstreams: 1 DISSSERTAÇÃO - FREDERICO.pdf: 1003174 bytes, checksum: 3449613d0bfa6567b122b1461608bc55 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-16T14:41:59Z (GMT) No. of bitstreams: 1 monfardini_f_me_prud.pdf: 1003174 bytes, checksum: 3449613d0bfa6567b122b1461608bc55 (MD5) / Made available in DSpace on 2016-05-16T14:41:59Z (GMT). No. of bitstreams: 1 monfardini_f_me_prud.pdf: 1003174 bytes, checksum: 3449613d0bfa6567b122b1461608bc55 (MD5) Previous issue date: 2016-02-19 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Os Modelos Lineares Generalizados (GLM) foram introduzidos no início dos anos 70, tendo um grande impacto no desenvolvimento da teoria estatística. Do ponto de vista teórico, esta classe de modelos representa uma abordagem unificada de muitos modelos estatísticos, correntemente usados nas aplicações, podendo-se utilizar dos mesmos procedimentos de inferência. Com o avanço computacional das últimas décadas foi notável o desenvolvimento de extensões nesta classe de modelos e de métodos para os procedimentos de inferência. No contexto da abordagem Bayesiana, até a década de 80 utilizava-se de métodos aproximados de inferência, tais como aproximação de Laplace, quadratura Gaussiana e outros. No início da década de 90, foram popularizados os métodos de Monte Carlo via Cadeias de Markov (Monte Carlo Markov Chain - MCMC) que revolucionaram as aplicações no contexto Bayesiano. Apesar de serem métodos altamente eficientes, a convergência do algoritmo em modelos complexos pode ser extremamente lenta, o que gera alto custo computacional. Em 2009 surgiu o método de Aproximações de Laplace Aninhadas Integradas (Integrated Nested Laplace Aproximation - INLA) que busca eficiência tanto no custo computacional como na precisão das estimativas. Considerando a importância desta classe de modelos, neste trabalho propõem-se explorar extensões dos MLG para dados longitudinais e recentes propostas apresentadas na literatura para os procedimentos de inferência. Mais especificamente, explorar modelos para dados binários (binomiais) e para dados de contagem (Poisson), considerando a presença de variabilidade extra, incluindo superdispersão e presença de efeitos aleatórios através de modelos hierárquicos e modelos hierárquicos dinâmicos. Além disso, explorar diferentes procedimentos de inferência no contexto Bayesiano, incluindo MCMC e INLA. / Generalized Linear Models (GLM) were introduced in the early 70s, having a great impact on the development of statistical theory. From a theoretical point of view, this class of model is a unified approach to many statistical models commonly used in applications and can be used with the same inference procedures. With advances in the computer over subsequent decades has come a remarkable development of extensions in this class of design and method for inference procedures. In the context of Bayesian approach, until the 80s, it was used to approximate inference methods, such as approximation of Laplace, Gaussian quadrature, etc., The Monte Carlo Markov Chain methods (MCMC) were popularized in the early 90s and have revolutionized applications in a Bayesian context. Although they are highly efficient methods, the convergence of the algorithm in complex models can be extremely slow, which causes high computational cost. The Integrated Nested Laplace Approximations method (INLA), seeking efficiency in both computational cost and accuracy of estimates, appeared in 2009. This work proposes to explore extensions of GLM for longitudinal data considering the importance of this class of model, and recent proposals in the literature for inference procedures. More specifically, it explores models for binary data (binomial) and count data (Poisson), considering the presence of extra variability, including overdispersion and the presence of random effects through hierarchical models and hierarchical dynamic models. It also explores different Bayesian inference procedures in this context, including MCMC and INLA.
19

Regressão binomial negativa geograficamente ponderada : modelando superdispersão espacial

Rodrigues, Thais Carvalho Valadares 02 February 2012 (has links)
Dissertação (mestrado)—Universidade de Brasília, Departamento de Estatística, 2012. / Submitted by Tania Milca Carvalho Malheiros (tania@bce.unb.br) on 2012-04-30T13:46:03Z No. of bitstreams: 1 2012_ThaisCarvalhoValadaresRodrigues_Parcial.pdf: 2162663 bytes, checksum: 435c4aab7ab9af8aa2453336c4529a5b (MD5) / Approved for entry into archive by Elzi Bittencourt(elzi@bce.unb.br) on 2012-05-01T12:22:13Z (GMT) No. of bitstreams: 1 2012_ThaisCarvalhoValadaresRodrigues_Parcial.pdf: 2162663 bytes, checksum: 435c4aab7ab9af8aa2453336c4529a5b (MD5) / Made available in DSpace on 2012-05-01T12:22:13Z (GMT). No. of bitstreams: 1 2012_ThaisCarvalhoValadaresRodrigues_Parcial.pdf: 2162663 bytes, checksum: 435c4aab7ab9af8aa2453336c4529a5b (MD5) / A regressão global pressupõe que um modelo único é adequado para descrever todas as partes de uma região de estudo. No entanto, a força dos relacionamentos entre as variáveis pode não ser espacialmente constante. Além disso, os fatores envolvidos são geralmente tão complexos, que é difícil identificá-los na forma de variáveis explanatórias. Muitas vezes, ainda tem-se o problema de tamanho de amostra reduzido. Neste contexto, surge a Regressão Geograficamente Ponderada (RGP), a fim de modelar dados espaciais não est acionários. Utilizando funções kernel, a RGP permite que os parâmetros do modelo variem espacialmente, produzindo superfícies não paramétricas das suas estimativas. Considerando dados de contagem com superdispersão, o mais adequado é utilizar a distribuição Binomial Negativa. Por isso, o presente trabalho propõe dois modelos de Regressão Geograficamente Ponderada utilizando esta distribuição, a saber, RBNGPg e RBNGP. Estes modelos diferem-se na forma de estimação do parâmetro de superdispersão e, consequentemente, em termos de complexidade. Neste trabalho, os modelos propostos sao aplicados a 5 estudos de caso, envolvendo dados reais e simulados. Os resultados obtidos mostram a superioridade deles no ajuste de dados de contagem nao estacionários e com superdispersão com respeito aos modelos concorrentes, a saber, regressão global - Poisson e Binomial Negativa - e Regressão de Poisson Geograficamente Ponderada- Além disso, verifica-se que estes modelos concorrentes sao casos especiais do modelo mais robusto RBNGP. ______________________________________________________________________________ ABSTRACT / The global regression assumes that a single model is adequate to describe all parts of a study region. However, the strength of relationships between variables may not be spatially constant. In addition, the factors involved are often so complex that it is difficult to identify them in the form of explanatory variables. Many times, we also have the problem of small sample size. hi this context Geographically Weighted Regression (GW R) is introduced in order to model non-stationary spatial data. Using kernel functions, GW R allows the model parameters to vary spatially, producing non-parametric surfaces of their estimates. To model count data with overdispersion, the most- appropriate is to use the Negative Binomial distribution. Therefore, we propose two models of Geographically Weighted Regression using this distribution, namely GW NBRg and GW NBR. These models differ in the way the overdispersion parameter is estimated and, consequently, in terms of complexity. In this dissertation, the proposed models are applied to 5 case studies involving real and simulated data. The results show their superiority in modelling non-stationary count data with overdispersion with respect to competing models, namely, global regression - Poisson and Negative Binomial - and Geographically Weighted Poisson Regression. Moreover, we demonstrate that these competing models are special cases of the more robust model GW NBR.
20

Modelos para análise de dados não-normais multivariados longitudinais

Ceratti, Rubem Kaipper 08 July 2013 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2013. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-01-12T15:24:17Z No. of bitstreams: 1 2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2016-01-12T15:52:07Z (GMT) No. of bitstreams: 1 2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Made available in DSpace on 2016-01-12T15:52:07Z (GMT). No. of bitstreams: 1 2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Neste trabalho são abordados modelos lineares generalizados de efeitos mistos para análise de dados longitudinais multivariados, no tratamento de dados em que se assume a distribuição Poisson composta, que tem suporte em $[0,+\infty)$ e é um caso particular da família Tweedie de distribuições, também pertencente à família exponencial de dispersão. No ajuste dos modelos mistos multivariados para a distribuição Poisson composta, utiliza-se uma abordagem de pseudo-verossimilhança, estimando modelos par-a-par e reduzindo o tempo computacional. Como aplicação, analisa-se um conjunto de dados provenientes de um experimento agronômico no qual avaliam-se os efeitos de tratamentos, ao longo do tempo, no perfil de 25 compostos químicos de plantas de algodão. ______________________________________________________________________________ ABSTRACT / This work presents generalized linear mixed effects models as a framework to the analysis of longitudinal multivariate data for which the underlying distribution is assumed to follow a compound Poisson distribution, whose support lies in $[0,+\infty)$, and is a particular case of the Tweedie family of distributions, and, also, belongs to the exponential dispersion family. In order to fit multivariate mixed models to the compound Poisson distribution, a pseudo-likelihood approach is used, fitting pairwise models and reducing computational time. As an application, agronomic experiment data is analyzed, estimating the effects of 5 treatments, over different time periods, on the profile of 25 organic compounds of cotton plants.

Page generated in 0.1417 seconds