Spelling suggestions: "subject:"model azimutal"" "subject:"model azimutale""
1 |
Étude théorique et numérique des effets de brisures de symétrie sur les modes thermo-acoustiques azimutaux dans les chambres annulaires / Theoretical and numerical study of symmetry breaking effects on azimuthal thermoacoustic modes in annular combustorsBauerheim, Michaël 01 December 2014 (has links)
Une large gamme de problèmes physiques, des petites molécules aux étoiles géantes, contiennent des symétries de rotation et sont sujets à des oscillations azimutales ou transverses. Quand cette symétrie est rompue, le système peut devenir instable. Dans cette thèse, les brisures de symétries sont étudiées dans les chambres de combustion annulaires, sujettes à des instabilités thermo-acoustiques azimutales. En premier lieu, deux types de brisures sont obtenus analytiquement : la première en répartissant des bruleurs différents le long de la chambre et la seconde provoquée par le champ moyen lui-même. Ces ruptures de symétries entraînent une séparation des fréquences, fixe la structure du mode et peut déstabiliser le système. De plus, une approche Quantification d’Incertitudes (UQ) permet d’évaluer l’effet de la rupture de symétries provoquée par les incertitudes sur la description ou le comportement des flammes. Pour compléter cette théorie, des Simulations aux Grandes Echelles (SGE) sont réalisées sur un mono-secteur ainsi que sur une configuration complète 360° de l’expérience annulaire de Cambridge. Les résultats numériques sont comparés aux données expérimentales et montrent un bon accord. En particulier, un mode instable à 1800 Hz croît dans les deux cas. Cependant, la SGE, limitée par son coût important, ne permet pas l’étude du cycle limite s’établissant après plusieurs centaines de millisecondes. Pour pallier à ce problème, une nouvelle approche, appelée AMT, est développée : les résultats d’une théorie ou d’un solveur acoustique sont injectés dans une simulation SGE. Cette approche permet d’étudier les brisures de symétries, la nature et la dynamique des modes acoustiques, ainsi que d’évaluer l’amortissement dans des configurations réalistes. / A large range of physical problems, from molecules to giant stars, contains rotating symmetry and can exhibit azimuthal waves or vibrations. When this symmetry is broken, the system can become unstable with chaotic behaviors. Symmetry breaking is investigated in annular combustors prone to azimuthal thermo-acoustic instabilities. First, theories reveal that two types of symmetry breaking exist : due to different burner types distributed along the chamber or due to the flow itself . It leads to frequency splitting, fixes the mode structure and can destabilize the configuration. A UQ analysis is also performed to quantify the symmetry breaking effect due to uncertainties of flame descriptions or behaviors. To complete theory, Large Eddy Simulations are performed on a single-sector as well as on a complete 360° configuration of the annular experiment of Cambridge. Numerical results are compared to experimental data showing a good agreement. In particular, an unstable azimuthal mode at 1800 Hz grows in both LES and experiment. However, LES cannot investigate the limit cycle because of its extreme cost. To tackle this problem, a new methodology is developed, called AMT, where theory or Helmholtz solver predictions are injected into LES or DNS. This method allows to study symmetry breaking, mode nature and dynamics as well as evaluating damping in realistic annular configurations.
|
2 |
Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers / Simulation aux Grandes Echelles des instabilités thermoacoustiques dans les chambres de combustion annulairesWolf, Pierre 21 November 2011 (has links)
La conception des turbines à gaz est aujourd'hui contrainte par des normes d'émissions de plus en plus draconiennes, couplées à l'urgente nécessité d'économiser les ressources en carburant fossile. Les choix technologiques adoptés pour répondre à ces exigences entraînent parfois l'apparition d'instabilités de combustion. Dans les chambres de combustion annulaires, ces instabilités prennent souvent la forme de modes azimutaux. Prédire ces modes reste un défi à l'heure actuelle et impose de considérer la totalité de la géométrie annulaire, ce qui n'est rendu possible, dans le domaine de la simulation numérique en mécanique des fluides, que par l'avènement très récent des supercalculateurs massivement parallèles. Dans ce travail de thèse, les modes azimutaux pouvant apparaître dans les chambres de combustion annulaires sont abordés avec plusieurs approches: un modèle analytique 1D, un solveur acoustique de Helmholtz 3D et enfin des Simulations aux Grandes Echelles. Combiner ces méthodes permet une meilleure compréhension de la structure de ces modes et peut amener à considérer des solutions innovantes pour concevoir des chambres inconditionnellement stables. / Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the full combustion chamber, which, in the numerical simulation domain, remained out of reach until very recently and the development of massively parallel computers. In this work, azimuthal modes that may develop in annular combustors are studied with different numerical approaches: a low order model, a 3D Helmholtz solver and Large Eddy Simulations. Combining these methods allows a better understanding of the structure of the instabilities and may provide guidelines to build intrinsically stable combustion chambers.
|
Page generated in 0.0573 seconds