• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 79
  • 36
  • 27
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 85
  • 85
  • 44
  • 33
  • 33
  • 33
  • 29
  • 28
  • 27
  • 27
  • 27
  • 26
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Estimativa da concentração de clorofila-a através de dados de cor do oceano e caracterização oceanográfica da plataforma continental adjacente à Baixada Santista / Estimative of chlorophyll-a concentration by ocean color data and oceanographic characterization of the continental shelf adjacent to Baixada Santista

Melissa Carvalho 16 March 2009 (has links)
Um algoritmo empírico regional para estimativa de clorofila-a na plataforma continental adjacente à Baixada Santista foi desenvolvido a partir de dados radiométricos e de concentração de clorofila-a, obtidos em 49 estações oceanográficas durante dois cruzeiros, em outubro de 2005 e março de 2006. Foram selecionadas aleatoriamente 32 estações para o desenvolvimento do algoritmo e 17 para avaliação do desempenho de modo a representar todos os intervalos de concentração de Cl-a nos dois subconjuntos de dados. O desempenho do algoritmo obtido foi superior (r2 = 0,8424 e EMQ= 0,0418) ao dos algoritmos globais dos sensores SeaWIFS, OC2v4 (r2=0,77; EMQ=0,07), OC4v4 (r2=0,78;EMQ=0,07) e MODIS, OC3 (r2=0,79;EMQ=0,09) para os dados radiométricos, e também superior (r2=0,68; EMQ = 0,028) ao algoritmo global OC3 (r2= 0,62; EMQ= 0,036) para os dados de refletância do sensor MODIS, e apresentou melhor desempenho quanto à influência dos demais componentes bio-ópticos da água nos desvios das estimativas. Com base em dados de dois outros cruzeiros (setembro de 2005 e março de 2006), foi feita uma caracterização oceanográfica da plataforma adjacente à Baixada Santista, que mostrou que a região apresenta acentuada variabilidade sazonal e pode ser caracterizada como oligotrófica em termos de disponibilidade de nutrientes e biomassa fitoplanctônica. / A regional empirical algorithm for chlorophyll-a estimative in the continental shelf adjacent to Baixada Santista was developed based on in situ data on spectral radiometric and chlorophyll-a concentration obtained in 49 oceanographic stations during two oceanographic cruisers, in October 2005 and March 2006. Data from 32 stations were randomly selected for algorithm development and the other 17 for algorithm evaluation, representing all intervals of chlorophyll-a concentration in the two data subset. The performance of the regional algorithm was superior (r2 = 0,8424; RMS = 0,0418) to the global algorithms of the SeaWiFS, OC2v4 (r2=0,77; RMS=0,07), OC4v4 (r2=0,78;RMS=0,07) and MODIS, OC3 (r2=0,79; RMS=0,09) for the radiometric data, and also superior (r2=0,68; RMS = 0,028) to the global algorithm OC3 (r2= 0,62; RMS= 0,036) for reflectance data acquired by MODIS sensor. Also, the regional algorithm presented better performance, while estimative errors, related to the influence of other biooptical components of seawater. Based on the data of two other cruisers (September 2005 and March 2006), the oceanographic characterization of the continental shelf adjacent to Baixada Santista was made, revealing the region presents accentuate seasonal variability and can be characterized as oligotrophic in terms of nutrient availability and phytoplankton biomass.
92

Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites / Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.

Grzegozewski, Denise Maria 03 February 2016 (has links)
Made available in DSpace on 2017-07-10T19:24:17Z (GMT). No. of bitstreams: 1 DENISE_M_GR_ZEGOZEWSKI.pdf: 8188144 bytes, checksum: 045f54782a1ea2161edf5aa7046a8c1c (MD5) Previous issue date: 2016-02-03 / Estimates of agricultural production are greatly important especially in economy field. However, they depend on area knowledge and cropping yield. Thus, this study aimed to propose a methodology to estimate the areas cropped with soybeans and corn in Paraná State according to multi-temporal EVI/MODIS vegetation index images for 2010/2011, 2011/2012 and 2012/2013 crop years. In addition, there was a research with spatial autocorrelation soybean yield in Paraná, with EVI vegetation index and meteorological variables in a decennial scale and estimate yield using CAR, SAR and GWR models. In Paraná State, there is a drawback to map soybeans crop since corn sowing period is very close to the first one. Therefore, images from the maximum and minimum vegetative vigour were drawn of each studied crop for mapping soybean and corn crops in order to obtain both cropping areas. Although, for the separation, Spectro Angle Mapper algorithm (SAM) was applied by one of the studied crops, while mapping was obtained by multiplying the other bands. Thus, for spatial statistics application of mapped data, the average EV profile of each municipality was extracted as well as for each multi-temporal image, in order to change them into a decennial scale. According to the spatial statistics of such areas, the descriptive analysis of univariate spatial autocorrelation (global and local) of each ten-day variable was used based on the soybean cycle. A bivariate autocorrelation analysis between soybean yield and the studied varieties were also performed. Finalizing the methodology, variables with the highest significant level by stepwise method were selected and SAR, CAR and GWR models were generated to estimate soybean yield. As results, regarding mappings, the following answers for soybean were found out: r = 0.95 and r = 0.99, and while for corn, the answers were: r = 0.72 and r = 0.95 for 2012/2013 and 2013/2014 crop years in relation to the official data from SEAB. So, it has been proved some great efficiency of this methodology to separate and identify crops. When the descriptive statistics of municipalities for each variable was carried out, it was found out that some regions began an early sowing in relation to other ones in Paraná by the decennial vegetation index. The ten-day scale was also possible to be identified according to the climatic factors that caused soybean yield damage. Based on the analysis of spatial autocorrelation, the greatest similarities occurred in 2011/2012 crop year, the one affected by the weather change, whose yields were similar in the municipalities of Paraná State. For spatial modelling, it was observed that selection of decennial variables was different for each studied crop year, and the best model selected by the validation. And GWR was chosen as the best model by the AIC, BIC and adjusted R² validation criteria. The residuals were randomly distributed throughout all the State, so that spatial autocorrelation could be eliminated. / As estimativas das produções agrícolas têm grande importância, principalmente, no âmbito econômico. No entanto, elas são dependentes do conhecimento da área de cultivo e da produtividade da cultura. Desta forma, este trabalho teve por objetivo propor uma metodologia para estimar as áreas cultivadas com soja e milho em escala municipal no Estado do Paraná a partir de imagens multi-temporais do índice de vegetação EVI/MODIS, para os anos-safras 2010/2011, 2011/2012 e 2012/2013. Além disto, trabalhar com a autocorrelação espacial da produtividade da soja nesse Estado, com o índice de vegetação EVI e variáveis agrometeorológicas em escala decendial bem como estimar a produtividade a partir dos modelos CAR, SAR e GWR. No Paraná, há o inconveniente para mapear a soja devido à proximidade de datas de semeadura do milho. Assim, para o mapeamento da soja e do milho, utilizaram-se imagens englobando o período de máximo e mínimo vigor vegetativo de cada cultura, para se obter a área cultivada das duas. Para a separação, utilizou-se o algoritmo Spectro Angle Mapper (SAM) para uma das culturas e obteve-se o mapeamento da outra pela multiplicação de bandas. Para aplicação da estatística espacial dos dados mapeados, extraiu-se o perfil médio do EVI de cada município e para cada imagem multi-temporal para transformá-los em escala decendial. De acordo com a estatística espacial de áreas, utilizou-se a análise descritiva, de autocorrelação espacial univariada (global e local) de cada variável decendial com foco no ciclo da soja. Também realizou-se a análise de autocorrelação bivariada entre a produtividade da soja com as variáveis em estudo. Finalizando a metodologia, selecionaram-se as variáveis com maior índice de significância pelo método de stepwise e, em seguida, foram gerados os modelos estimados (SAR, CAR e GWR) da produtividade da soja. Como resultados, foram encontradas as seguintes respostas para os mapeamentos da soja r= 0,95 e 0,99, e para o milho de r = 0,72 e r= 0,95 para os anos-safras 2012/2013 e 2013/2014 em relação aos dados oficiais da SEAB. Logo, comprovou-se a grande eficiência da metodologia para separação e identificação das culturas. Quando realizada a estatística descritiva dos municípios para cada variável, verificaram-se regiões que iniciam as semeaduras antecipadas em relação a outras regiões do Estado pelos decêndios do índice de vegetação. Foi também possível identificar os decêndios em que os fatores climáticos causaram danos à produtividade da soja. Na análise da autocorrelação espacial, as maiores similaridades ocorreram no ano-safra 2011/2012, ano afetado pela variação climática, cujas produtividades foram semelhantes nos municípios do Paraná. Para a modelagem espacial, verificou-se que a seleção das variáveis decêndiais foi diferente para cada ano-safra estudado, e o GWR foi escolhido como melhor modelo pelos critérios de validação, AIC, BIC e R² ajustado. Foram encontrados resíduos distribuídos aleatoriamente por todo o Estado, para que assim se eliminasse a autocorrelação espacial
93

Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites / Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.

Grzegozewski, Denise Maria 03 February 2016 (has links)
Made available in DSpace on 2017-05-12T14:47:34Z (GMT). No. of bitstreams: 1 DENISE_M_GR_ZEGOZEWSKI.pdf: 8188144 bytes, checksum: 045f54782a1ea2161edf5aa7046a8c1c (MD5) Previous issue date: 2016-02-03 / Estimates of agricultural production are greatly important especially in economy field. However, they depend on area knowledge and cropping yield. Thus, this study aimed to propose a methodology to estimate the areas cropped with soybeans and corn in Paraná State according to multi-temporal EVI/MODIS vegetation index images for 2010/2011, 2011/2012 and 2012/2013 crop years. In addition, there was a research with spatial autocorrelation soybean yield in Paraná, with EVI vegetation index and meteorological variables in a decennial scale and estimate yield using CAR, SAR and GWR models. In Paraná State, there is a drawback to map soybeans crop since corn sowing period is very close to the first one. Therefore, images from the maximum and minimum vegetative vigour were drawn of each studied crop for mapping soybean and corn crops in order to obtain both cropping areas. Although, for the separation, Spectro Angle Mapper algorithm (SAM) was applied by one of the studied crops, while mapping was obtained by multiplying the other bands. Thus, for spatial statistics application of mapped data, the average EV profile of each municipality was extracted as well as for each multi-temporal image, in order to change them into a decennial scale. According to the spatial statistics of such areas, the descriptive analysis of univariate spatial autocorrelation (global and local) of each ten-day variable was used based on the soybean cycle. A bivariate autocorrelation analysis between soybean yield and the studied varieties were also performed. Finalizing the methodology, variables with the highest significant level by stepwise method were selected and SAR, CAR and GWR models were generated to estimate soybean yield. As results, regarding mappings, the following answers for soybean were found out: r = 0.95 and r = 0.99, and while for corn, the answers were: r = 0.72 and r = 0.95 for 2012/2013 and 2013/2014 crop years in relation to the official data from SEAB. So, it has been proved some great efficiency of this methodology to separate and identify crops. When the descriptive statistics of municipalities for each variable was carried out, it was found out that some regions began an early sowing in relation to other ones in Paraná by the decennial vegetation index. The ten-day scale was also possible to be identified according to the climatic factors that caused soybean yield damage. Based on the analysis of spatial autocorrelation, the greatest similarities occurred in 2011/2012 crop year, the one affected by the weather change, whose yields were similar in the municipalities of Paraná State. For spatial modelling, it was observed that selection of decennial variables was different for each studied crop year, and the best model selected by the validation. And GWR was chosen as the best model by the AIC, BIC and adjusted R² validation criteria. The residuals were randomly distributed throughout all the State, so that spatial autocorrelation could be eliminated. / As estimativas das produções agrícolas têm grande importância, principalmente, no âmbito econômico. No entanto, elas são dependentes do conhecimento da área de cultivo e da produtividade da cultura. Desta forma, este trabalho teve por objetivo propor uma metodologia para estimar as áreas cultivadas com soja e milho em escala municipal no Estado do Paraná a partir de imagens multi-temporais do índice de vegetação EVI/MODIS, para os anos-safras 2010/2011, 2011/2012 e 2012/2013. Além disto, trabalhar com a autocorrelação espacial da produtividade da soja nesse Estado, com o índice de vegetação EVI e variáveis agrometeorológicas em escala decendial bem como estimar a produtividade a partir dos modelos CAR, SAR e GWR. No Paraná, há o inconveniente para mapear a soja devido à proximidade de datas de semeadura do milho. Assim, para o mapeamento da soja e do milho, utilizaram-se imagens englobando o período de máximo e mínimo vigor vegetativo de cada cultura, para se obter a área cultivada das duas. Para a separação, utilizou-se o algoritmo Spectro Angle Mapper (SAM) para uma das culturas e obteve-se o mapeamento da outra pela multiplicação de bandas. Para aplicação da estatística espacial dos dados mapeados, extraiu-se o perfil médio do EVI de cada município e para cada imagem multi-temporal para transformá-los em escala decendial. De acordo com a estatística espacial de áreas, utilizou-se a análise descritiva, de autocorrelação espacial univariada (global e local) de cada variável decendial com foco no ciclo da soja. Também realizou-se a análise de autocorrelação bivariada entre a produtividade da soja com as variáveis em estudo. Finalizando a metodologia, selecionaram-se as variáveis com maior índice de significância pelo método de stepwise e, em seguida, foram gerados os modelos estimados (SAR, CAR e GWR) da produtividade da soja. Como resultados, foram encontradas as seguintes respostas para os mapeamentos da soja r= 0,95 e 0,99, e para o milho de r = 0,72 e r= 0,95 para os anos-safras 2012/2013 e 2013/2014 em relação aos dados oficiais da SEAB. Logo, comprovou-se a grande eficiência da metodologia para separação e identificação das culturas. Quando realizada a estatística descritiva dos municípios para cada variável, verificaram-se regiões que iniciam as semeaduras antecipadas em relação a outras regiões do Estado pelos decêndios do índice de vegetação. Foi também possível identificar os decêndios em que os fatores climáticos causaram danos à produtividade da soja. Na análise da autocorrelação espacial, as maiores similaridades ocorreram no ano-safra 2011/2012, ano afetado pela variação climática, cujas produtividades foram semelhantes nos municípios do Paraná. Para a modelagem espacial, verificou-se que a seleção das variáveis decêndiais foi diferente para cada ano-safra estudado, e o GWR foi escolhido como melhor modelo pelos critérios de validação, AIC, BIC e R² ajustado. Foram encontrados resíduos distribuídos aleatoriamente por todo o Estado, para que assim se eliminasse a autocorrelação espacial
94

Using ship tracks to characterize the effects of haze on cloud properties

Segrin, Matthew S. 14 June 2006 (has links)
1-km MODIS observations of ship tracks off the west coast of the U.S. are used to characterize changes in cloud visible optical depths, cloud droplet radii, cloud cover fraction, and column cloud liquid water amount as low-level marine clouds respond to particle pollution from underlying ships. This study re-examines the finding of earlier studies based on Advanced Very High Resolution Radiometer (AVHRR) observations showing that when restricted to pixels overcast by low-level, single-layered cloud systems, the polluted clouds in the ship tracks had on average ~20% less liquid water than the nearby uncontaminated clouds. This study uses Moderate Imaging Spectroradiometer (MODIS) observations from the Terra and Aqua satellites and takes advantage of the 1.6 and 2.1-µm channels in addition to the 3.7-µm channel available on AVHRR to derive droplet effective radii. The additional channels allow for different and presumably more comprehensive analyses of the cloud properties. In addition, this study uses a retrieval scheme that accounts for the effects of partial cloudiness within the 1-km pixels on the retrieved cloud properties. An improved automated track finding scheme that allows for the selection of unpolluted clouds to be closer to the clouds identified as being polluted is also employed in this study. When restricted to overcast pixels, as was done in earlier studies, results from the Terra and Aqua MODIS observations indicate that cloud droplet effective radii are significantly smaller and cloud optical depths significantly larger for polluted pixels than for unpolluted pixels. Cloud top height does not change when clouds become polluted but cloud liquid water path decreases slightly but significantly. The decrease in cloud liquid water obtained with the MODIS observations was at most ~10%, much less than the 20% obtained with the AVHRR observations. This decrease, however, depended on the wavelength used to derive the droplet effective radii. Also, the clouds that were most sensitive to pollution were those with small optical depths and large droplet effective radii. / Graduation date: 2007
95

Remote Sensing & GIS for Land Cover/ Land Use Change Detection and Analysis in the Semi-Natural Ecosystems and Agriculture Landscapes of the Central Ethiopian Rift Valley

Sherefa Muzein, Bedru 27 March 2007 (has links) (PDF)
Technical complexities and the high cost of satellite images have hindered the adoption of remote sensing technology and tools for nature conservation works in Ethiopia as in many developing countries. The terrestrial and aquatic ecosystems in Abijjata Shala Lakes National Park (ASLNP) and the Important Bird Areas (IBAs) around the park are considered to be one of the most important home ranges for birds. However, little is known about the effect of land use/land cover (LULC) dynamics, due to lack of technical know how and logistical problems. However, it has been shown in this study that sophisticated image management works are not always relevant. Instead a simple method of utilizing the thermal band has been demonstrated. A new approach of long-term dynamics analysis method has also been suggested. A successful classification of images was achieved after such simple enhancement tests. It has been discovered that, there were more active LULC change processes in the area in the first study period (1973 to 1986) than during the second study period (1986-2000). In the first period nearly half of the landscape underwent land cover change processes with more than 26% of the entire landscape experiencing forest or land degradation. In the second period the extent of the change process was limited to only 1/3 of the total area with a smaller amount of degradation processes than before. During the entire study period, agriculture was responsible for the loss of more than 4/5 of the total terrestrial productive ecosystem. More than 37.6% of the total park area has been experiencing this loss for the past 3 decades. Only 1/5 of this area has a chance to revive, the remaining has undergone a permanent degradation. Lake Abijjata lost half of its size during the past 30 years. In the Zeway-Awassa basin 750 km², 2428km² and 3575km² of terrestrial lands and water bodies are within a distance of 10km, 20km and 30km from IBAs respectively. There are ecologically important areas where two or more IBAs overlap. In areas where more than two to five IBAs overlap, up to 85km² of areas have been recently degraded. High livestock density is one of the reasons for degradation. Using a monthly MODIS data from 2000-2005 and a series of interpolation techniques, the productivity of the area as well as the standing biomass were estimated. Moreover, a new method of spatially accurate livestock density assessment was developed in this study. Only 0.3% of the park area is found to be suitable for productive livestock development but nearly all inhabitants think the area is suitable. Feed availability in ASLNP is scarce even during rainy seasons. Especially the open woodlands are subject to overgrazing. Such shortage forces the inhabitants to cut trees for charcoal making to buy animal feed and non-food consumables. While more than 95% of the inhabitants in the park expanded their agriculture lands, only 13.3% of the farmers managed to produce cereals for market. The application of low cost remote sensing and GIS methods provided ample information that enables to conclude that low productivity and household food insecurity are the main driving forces behind land cover changes that are negatively affecting the natural and semi-natural ecosystems in the central and southern Rift Valley of Ethiopia. The restoration of natural ecosystems or conservation of biodiversity can be achieved only if those driving forces are tackled sustainably.
96

Analysis of the spatial heterogeneity of land surface parameters and energy flux densities / Analyse der räumlichen Heterogenität von Landoberflächenparametern und Energieflussdichten

Tittebrand, Antje 10 June 2010 (has links)
This work was written as a cumulative doctoral thesis based on reviewed publications. Climate projections are mainly based on the results of numeric simulations from global or regional climate models. Up to now processes between atmosphere and land surface are only rudimentarily known. This causes one of the major uncertainties in existing models. In order to reduce parameterisation uncertainties and to find a reasonable description of sub grid heterogeneities, the determination and evaluation of parameterisation schemes for modelling require as many datasets from different spatial scales as possible. This work contributes to this topic by implying different datasets from different platforms. Its objective was to analyse the spatial heterogeneity of land surface parameters and energy flux densities obtained from both satellite observations with different spatial and temporal resolutions and in-situ measurements. The investigations were carried out for two target areas in Germany. First, satellite data for the years 2002 and 2003 were analysed and validated from the LITFASS-area (Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a longterm Study). Second, the data from the experimental field sites of the FLUXNET cluster around Tharandt from the years 2006 and 2007 were used to determine the NDVI (Normalised Difference Vegetation Index for identifying vegetated areas and their "condition"). The core of the study was the determination of land surface characteristics and hence radiant and energy flux densities (net radiation, soil heat flux, sensible and latent heat flux) using the three optical satellite sensors ETM+ (Enhanced Thematic Mapper), MODIS (Moderate Resolution Imaging Spektroradiometer) and AVHRR 3 (Advanced Very High Resolution Radiometer) with different spatial (30 m – 1 km) and temporal (1 day – 16 days) resolution. Different sensor characteristics and different data sets for land use classifications can both lead to deviations of the resultant energy fluxes between the sensors. Thus, sensor differences were quantified, sensor adaptation methods were implemented and a quality analysis for land use classifications was performed. The result is then a single parameterisation scheme that allows for the determination of the energy fluxes from all three different sensors. The main focus was the derivation of the latent heat flux (L.E) using the Penman-Monteith (P-M) approach. Satellite data provide measurements of spectral reflectance and surface temperatures. The P-M approach requires further surface parameters not offered by satellite data. These parameters include the NDVI, Leaf Area Index (LAI), wind speed, relative humidity, vegetation height and roughness length, for example. They were derived indirectly from the given satellite- or in-situ measurements. If no data were available so called default values from literature were taken. The quality of these parameters strongly influenced the exactness of the radiant- and energy fluxes. Sensitivity studies showed that NDVI is one of the most important parameters for determination of evaporation. In contrast it could be shown, that the parameters as vegetation height and measurement height have only minor influence on L.E, which justifies the use of default values for these parameters. Due to the key role of NDVI a field study was carried out investigating the spatial variability and sensitivity of NDVI above five different land use types (winter wheat, corn, grass, beech and spruce). Methods to determine this parameter not only from space (spectral), but also from in-situ tower measurements (broadband) and spectrometer data (spectral) were compared. The best agreement between the methods was found for winter wheat and grass measurements in 2006. For these land use types the results differed by less than 10 % and 15 %, respectively. Larger differences were obtained for the forest measurements. The correlation between the daily MODIS-NDVI data and the in-situ NDVI inferred from the spectrometer and the broadband measurements were r=0.67 and r=0.51, respectively. Subsequently, spatial variability of land surface parameters and fluxes were analysed. The several spatial resolutions of the satellite sensors can be used to describe subscale heterogeneity from one scale to the other and to study the effects of spatial averaging. Therefore land use dependent parameters and fluxes were investigated to find typical distribution patterns of land surface properties and energy fluxes. Implying the distribution patterns found here for albedo and NDVI from ETM+ data in models has high potential to calculate representative energy flux distributions on a coarser scale. The distribution patterns were expressed as probability density functions (PDFs). First results of applying PDFs of albedo, NDVI, relative humidity, and wind speed to the L.E computation are encouraging, and they show the high potential of this method. Summing up, the method of satellite based surface parameter- and energy flux determination has been shown to work reliably on different temporal and spatial scales. The data are useful for detailed analyses of spatial variability of a landscape and for the description of sub grid heterogeneity, as it is needed in model applications. Their usability as input parameters for modelling on different scales is the second important result of this work. The derived vegetation parameters, e.g. LAI and plant cover, possess realistic values and were used as model input for the Lokalmodell of the German Weather Service. This significantly improved the model results for L.E. Additionally, thermal parameter fields, e.g. surface temperature from ETM+ with 30 m spatial resolution, were used as input for SVAT-modelling (Soil-Vegetation-Atmosphere-Transfer scheme). Thus, more realistic L.E results were obtained, providing highly resolved areal information. / Die vorliegende Arbeit wurde auf der Grundlage begutachteter Publikationen als kumulative Dissertation verfasst. Klimaprognosen basieren im Allgemeinen auf den Ergebnissen numerischer Simulationen mit globalen oder regionalen Klimamodellen. Eine der entscheidenden Unsicherheiten bestehender Modelle liegt in dem noch unzureichenden Verständnis von Wechselwirkungsprozessen zwischen der Atmosphäre und Landoberflächen und dem daraus folgenden Fehlen entsprechender Parametrisierungen. Um das Problem einer unsicheren Modell-Parametrisierung aufzugreifen und zum Beispiel subskalige Heterogenität in einer Art und Weise zu beschreiben, dass sie für Modelle nutzbar wird, werden für die Bestimmung und Evaluierung von Modell-Parametrisierungsansätzen so viele Datensätze wie möglich benötigt. Die Arbeit trägt zu diesem Thema durch die Verwendung verschiedener Datensätze unterschiedlicher Plattformen bei. Ziel der Studie war es, aus Satellitendaten verschiedener räumlicher und zeitlicher Auflösung sowie aus in-situ Daten die räumliche Heterogenität von Landoberflächenparametern und Energieflussdichten zu bestimmen. Die Untersuchungen wurden für zwei Zielgebiete in Deutschland durchgeführt. Für das LITFASS-Gebiet (Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a longterm Study) wurden Satellitendaten der Jahre 2002 und 2003 untersucht und validiert. Zusätzlich wurde im Rahmen dieser Arbeit eine NDVI-Studie (Normalisierter Differenzen Vegetations Index: Maß zur Detektierung von Vegetationflächen, deren Vitalität und Dichte) auf den Testflächen des FLUXNET Clusters um Tharandt in den Jahren 2006 und 2007 realisiert. Die Grundlage der Arbeit bildete die Bestimmung von Landoberflächeneigenschaften und daraus resultierenden Energieflüssen, auf Basis dreier optischer Sensoren (ETM+ (Enhanced Thematic Mapper), MODIS (Moderate Resolution Imaging Spectroradiometer) und AVHRR 3 (Advanced Very High Resolution Radiometer)) mit unterschiedlichen räumlichen (30 m – 1 km) und zeitlichen (1 – 16 Tage) Auflösungen. Unterschiedliche Sensorcharakteristiken, sowie die Verwendung verschiedener, zum Teil ungenauer Datensätze zur Landnutzungsklassifikation führen zu Abweichungen in den Ergebnissen der einzelnen Sensoren. Durch die Quantifizierung der Sensorunterschiede, die Anpassung der Ergebnisse der Sensoren aneinander und eine Qualitätsanalyse von verschiedenen Landnutzungsklassifikationen, wurde eine Basis für eine vergleichbare Parametrisierung der Oberflächenparameter und damit auch für die daraus berechneten Energieflüsse geschaffen. Der Schwerpunkt lag dabei auf der Bestimmung des latenten Wärmestromes (L.E) mit Hilfe des Penman-Monteith Ansatzes (P-M). Satellitendaten liefern Messwerte der spektralen Reflexion und der Oberflächentemperatur. Die P-M Gleichung erfordert weitere Oberflächenparameter wie zum Beispiel den NDVI, den Blattflächenindex (LAI), die Windgeschwindigkeit, die relative Luftfeuchte, die Vegetationshöhe oder die Rauhigkeitslänge, die jedoch aus den Satellitendaten nicht bestimmt werden können. Sie müssen indirekt aus den oben genannten Messgrößen der Satelliten oder aus in-situ Messungen abgeleitet werden. Stehen auch aus diesen Quellen keine Daten zur Verfügung, können sogenannte Standard- (Default-) Werte aus der Literatur verwendet werden. Die Qualität dieser Parameter hat einen großen Einfluss auf die Bestimmung der Strahlungs- und Energieflüsse. Sensitivitätsstudien im Rahmen der Arbeit zeigen die Bedeutung des NDVI als einen der wichtigsten Parameter in der Verdunstungsbestimmung nach P-M. Im Gegensatz dazu wurde deutlich, dass z. B. die Vegetationshöhe und die Messhöhe einen relativ kleinen Einfluss auf L.E haben, so dass für diese Parameter die Verwendung von Standardwerten gerechtfertigt ist. Aufgrund der Schlüsselrolle, welche der NDVI in der Bestimmung der Verdunstung einnimmt, wurden im Rahmen einer Feldstudie Untersuchungen des NDVI über fünf verschiedenen Landnutzungstypen (Winterweizen, Mais, Gras, Buche und Fichte) hinsichtlich seiner räumlichen Variabilität und Sensitivität, unternommen. Dabei wurden verschiedene Bestimmungsmethoden getestet, in welchen der NDVI nicht nur aus Satellitendaten (spektral), sondern auch aus in-situ Turmmessungen (breitbandig) und Spekrometermessungen (spektral) ermittelt wird. Die besten Übereinstimmungen der Ergebnisse wurden dabei für Winterweizen und Gras für das Jahr 2006 gefunden. Für diese Landnutzungstypen betrugen die Maximaldifferenzen aus den drei Methoden jeweils 10 beziehungsweise 15 %. Deutlichere Differenzen ließen sich für die Forstflächen verzeichnen. Die Korrelation zwischen Satelliten- und Spektrometermessung betrug r=0.67. Für Satelliten- und Turmmessungen ergab sich ein Wert von r=0.5. Basierend auf den beschriebenen Vorarbeiten wurde die räumliche Variabilität von Landoberflächenparametern und Flüssen untersucht. Die unterschiedlichen räumlichen Auflösungen der Satelliten können genutzt werden, um zum einen die subskalige Heterogenität zu beschreiben, aber auch, um den Effekt räumlicher Mittelungsverfahren zu testen. Dafür wurden Parameter und Energieflüsse in Abhängigkeit der Landnutzungsklasse untersucht, um typische Verteilungsmuster dieser Größen zu finden. Die Verwendung der Verteilungsmuster (in Form von Wahrscheinlichkeitsdichteverteilungen – PDFs), die für die Albedo und den NDVI aus ETM+ Daten gefunden wurden, bietet ein hohes Potential als Modellinput, um repräsentative PDFs der Energieflüsse auf gröberen Skalen zu erhalten. Die ersten Ergebnisse in der Verwendung der PDFs von Albedo, NDVI, relativer Luftfeuchtigkeit und Windgeschwindigkeit für die Bestimmung von L.E waren sehr ermutigend und zeigten das hohe Potential der Methode. Zusammenfassend lässt sich feststellen, dass die Methode der Ableitung von Oberflächenparametern und Energieflüssen aus Satellitendaten zuverlässige Daten auf verschiedenen zeitlichen und räumlichen Skalen liefert. Die Daten sind für eine detaillierte Analyse der räumlichen Variabilität der Landschaft und für die Beschreibung der subskaligen Heterogenität, wie sie oft in Modellanwendungen benötigt wird, geeignet. Ihre Nutzbarkeit als Inputparameter in Modellen auf verschiedenen Skalen ist das zweite wichtige Ergebnis der Arbeit. Aus Satellitendaten abgeleitete Vegetationsparameter wie der LAI oder die Pflanzenbedeckung liefern realistische Ergebnisse, die zum Beispiel als Modellinput in das Lokalmodell des Deutschen Wetterdienstes implementiert werden konnten und die Modellergebnisse von L.E signifikant verbessert haben. Aber auch thermale Parameter, wie beispielsweise die Oberflächentemperatur aus ETM+ Daten in 30 m Auflösung, wurden als Eingabeparameter eines Soil-Vegetation-Atmosphere-Transfer-Modells (SVAT) verwendet. Dadurch erhält man realistischere Ergebnisse für L.E, die hochaufgelöste Flächeninformationen bieten.
97

Analysis of the spatial heterogeneity of land surface parameters and energy flux densities / Analyse der räumlichen Heterogenität von Landoberflächenparametern und Energieflussdichten

Tittebrand, Antje 02 August 2011 (has links) (PDF)
This work was written as a cumulative doctoral thesis based on reviewed publications. Climate projections are mainly based on the results of numeric simulations from global or regional climate models. Up to now processes between atmosphere and land surface are only rudimentarily known. This causes one of the major uncertainties in existing models. In order to reduce parameterisation uncertainties and to find a reasonable description of sub grid heterogeneities, the determination and evaluation of parameterisation schemes for modelling require as many datasets from different spatial scales as possible. This work contributes to this topic by implying different datasets from different platforms. Its objective was to analyse the spatial heterogeneity of land surface parameters and energy flux densities obtained from both satellite observations with different spatial and temporal resolutions and in-situ measurements. The investigations were carried out for two target areas in Germany. First, satellite data for the years 2002 and 2003 were analysed and validated from the LITFASS-area (Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a longterm Study). Second, the data from the experimental field sites of the FLUXNET cluster around Tharandt from the years 2006 and 2007 were used to determine the NDVI (Normalised Difference Vegetation Index for identifying vegetated areas and their "condition"). The core of the study was the determination of land surface characteristics and hence radiant and energy flux densities (net radiation, soil heat flux, sensible and latent heat flux) using the three optical satellite sensors ETM+ (Enhanced Thematic Mapper), MODIS (Moderate Resolution Imaging Spektroradiometer) and AVHRR 3 (Advanced Very High Resolution Radiometer) with different spatial (30 m – 1 km) and temporal (1 day – 16 days) resolution. Different sensor characteristics and different data sets for land use classifications can both lead to deviations of the resultant energy fluxes between the sensors. Thus, sensor differences were quantified, sensor adaptation methods were implemented and a quality analysis for land use classifications was performed. The result is then a single parameterisation scheme that allows for the determination of the energy fluxes from all three different sensors. The main focus was the derivation of the latent heat flux (L.E) using the Penman-Monteith (P-M) approach. Satellite data provide measurements of spectral reflectance and surface temperatures. The P-M approach requires further surface parameters not offered by satellite data. These parameters include the NDVI, Leaf Area Index (LAI), wind speed, relative humidity, vegetation height and roughness length, for example. They were derived indirectly from the given satellite- or in-situ measurements. If no data were available so called default values from literature were taken. The quality of these parameters strongly influenced the exactness of the radiant- and energy fluxes. Sensitivity studies showed that NDVI is one of the most important parameters for determination of evaporation. In contrast it could be shown, that the parameters as vegetation height and measurement height have only minor influence on L.E, which justifies the use of default values for these parameters. Due to the key role of NDVI a field study was carried out investigating the spatial variability and sensitivity of NDVI above five different land use types (winter wheat, corn, grass, beech and spruce). Methods to determine this parameter not only from space (spectral), but also from in-situ tower measurements (broadband) and spectrometer data (spectral) were compared. The best agreement between the methods was found for winter wheat and grass measurements in 2006. For these land use types the results differed by less than 10 % and 15 %, respectively. Larger differences were obtained for the forest measurements. The correlation between the daily MODIS-NDVI data and the in-situ NDVI inferred from the spectrometer and the broadband measurements were r=0.67 and r=0.51, respectively. Subsequently, spatial variability of land surface parameters and fluxes were analysed. The several spatial resolutions of the satellite sensors can be used to describe subscale heterogeneity from one scale to the other and to study the effects of spatial averaging. Therefore land use dependent parameters and fluxes were investigated to find typical distribution patterns of land surface properties and energy fluxes. Implying the distribution patterns found here for albedo and NDVI from ETM+ data in models has high potential to calculate representative energy flux distributions on a coarser scale. The distribution patterns were expressed as probability density functions (PDFs). First results of applying PDFs of albedo, NDVI, relative humidity, and wind speed to the L.E computation are encouraging, and they show the high potential of this method. Summing up, the method of satellite based surface parameter- and energy flux determination has been shown to work reliably on different temporal and spatial scales. The data are useful for detailed analyses of spatial variability of a landscape and for the description of sub grid heterogeneity, as it is needed in model applications. Their usability as input parameters for modelling on different scales is the second important result of this work. The derived vegetation parameters, e.g. LAI and plant cover, possess realistic values and were used as model input for the Lokalmodell of the German Weather Service. This significantly improved the model results for L.E. Additionally, thermal parameter fields, e.g. surface temperature from ETM+ with 30 m spatial resolution, were used as input for SVAT-modelling (Soil-Vegetation-Atmosphere-Transfer scheme). Thus, more realistic L.E results were obtained, providing highly resolved areal information. / Die vorliegende Arbeit wurde auf der Grundlage begutachteter Publikationen als kumulative Dissertation verfasst. Klimaprognosen basieren im Allgemeinen auf den Ergebnissen numerischer Simulationen mit globalen oder regionalen Klimamodellen. Eine der entscheidenden Unsicherheiten bestehender Modelle liegt in dem noch unzureichenden Verständnis von Wechselwirkungsprozessen zwischen der Atmosphäre und Landoberflächen und dem daraus folgenden Fehlen entsprechender Parametrisierungen. Um das Problem einer unsicheren Modell-Parametrisierung aufzugreifen und zum Beispiel subskalige Heterogenität in einer Art und Weise zu beschreiben, dass sie für Modelle nutzbar wird, werden für die Bestimmung und Evaluierung von Modell-Parametrisierungsansätzen so viele Datensätze wie möglich benötigt. Die Arbeit trägt zu diesem Thema durch die Verwendung verschiedener Datensätze unterschiedlicher Plattformen bei. Ziel der Studie war es, aus Satellitendaten verschiedener räumlicher und zeitlicher Auflösung sowie aus in-situ Daten die räumliche Heterogenität von Landoberflächenparametern und Energieflussdichten zu bestimmen. Die Untersuchungen wurden für zwei Zielgebiete in Deutschland durchgeführt. Für das LITFASS-Gebiet (Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a longterm Study) wurden Satellitendaten der Jahre 2002 und 2003 untersucht und validiert. Zusätzlich wurde im Rahmen dieser Arbeit eine NDVI-Studie (Normalisierter Differenzen Vegetations Index: Maß zur Detektierung von Vegetationflächen, deren Vitalität und Dichte) auf den Testflächen des FLUXNET Clusters um Tharandt in den Jahren 2006 und 2007 realisiert. Die Grundlage der Arbeit bildete die Bestimmung von Landoberflächeneigenschaften und daraus resultierenden Energieflüssen, auf Basis dreier optischer Sensoren (ETM+ (Enhanced Thematic Mapper), MODIS (Moderate Resolution Imaging Spectroradiometer) und AVHRR 3 (Advanced Very High Resolution Radiometer)) mit unterschiedlichen räumlichen (30 m – 1 km) und zeitlichen (1 – 16 Tage) Auflösungen. Unterschiedliche Sensorcharakteristiken, sowie die Verwendung verschiedener, zum Teil ungenauer Datensätze zur Landnutzungsklassifikation führen zu Abweichungen in den Ergebnissen der einzelnen Sensoren. Durch die Quantifizierung der Sensorunterschiede, die Anpassung der Ergebnisse der Sensoren aneinander und eine Qualitätsanalyse von verschiedenen Landnutzungsklassifikationen, wurde eine Basis für eine vergleichbare Parametrisierung der Oberflächenparameter und damit auch für die daraus berechneten Energieflüsse geschaffen. Der Schwerpunkt lag dabei auf der Bestimmung des latenten Wärmestromes (L.E) mit Hilfe des Penman-Monteith Ansatzes (P-M). Satellitendaten liefern Messwerte der spektralen Reflexion und der Oberflächentemperatur. Die P-M Gleichung erfordert weitere Oberflächenparameter wie zum Beispiel den NDVI, den Blattflächenindex (LAI), die Windgeschwindigkeit, die relative Luftfeuchte, die Vegetationshöhe oder die Rauhigkeitslänge, die jedoch aus den Satellitendaten nicht bestimmt werden können. Sie müssen indirekt aus den oben genannten Messgrößen der Satelliten oder aus in-situ Messungen abgeleitet werden. Stehen auch aus diesen Quellen keine Daten zur Verfügung, können sogenannte Standard- (Default-) Werte aus der Literatur verwendet werden. Die Qualität dieser Parameter hat einen großen Einfluss auf die Bestimmung der Strahlungs- und Energieflüsse. Sensitivitätsstudien im Rahmen der Arbeit zeigen die Bedeutung des NDVI als einen der wichtigsten Parameter in der Verdunstungsbestimmung nach P-M. Im Gegensatz dazu wurde deutlich, dass z. B. die Vegetationshöhe und die Messhöhe einen relativ kleinen Einfluss auf L.E haben, so dass für diese Parameter die Verwendung von Standardwerten gerechtfertigt ist. Aufgrund der Schlüsselrolle, welche der NDVI in der Bestimmung der Verdunstung einnimmt, wurden im Rahmen einer Feldstudie Untersuchungen des NDVI über fünf verschiedenen Landnutzungstypen (Winterweizen, Mais, Gras, Buche und Fichte) hinsichtlich seiner räumlichen Variabilität und Sensitivität, unternommen. Dabei wurden verschiedene Bestimmungsmethoden getestet, in welchen der NDVI nicht nur aus Satellitendaten (spektral), sondern auch aus in-situ Turmmessungen (breitbandig) und Spekrometermessungen (spektral) ermittelt wird. Die besten Übereinstimmungen der Ergebnisse wurden dabei für Winterweizen und Gras für das Jahr 2006 gefunden. Für diese Landnutzungstypen betrugen die Maximaldifferenzen aus den drei Methoden jeweils 10 beziehungsweise 15 %. Deutlichere Differenzen ließen sich für die Forstflächen verzeichnen. Die Korrelation zwischen Satelliten- und Spektrometermessung betrug r=0.67. Für Satelliten- und Turmmessungen ergab sich ein Wert von r=0.5. Basierend auf den beschriebenen Vorarbeiten wurde die räumliche Variabilität von Landoberflächenparametern und Flüssen untersucht. Die unterschiedlichen räumlichen Auflösungen der Satelliten können genutzt werden, um zum einen die subskalige Heterogenität zu beschreiben, aber auch, um den Effekt räumlicher Mittelungsverfahren zu testen. Dafür wurden Parameter und Energieflüsse in Abhängigkeit der Landnutzungsklasse untersucht, um typische Verteilungsmuster dieser Größen zu finden. Die Verwendung der Verteilungsmuster (in Form von Wahrscheinlichkeitsdichteverteilungen – PDFs), die für die Albedo und den NDVI aus ETM+ Daten gefunden wurden, bietet ein hohes Potential als Modellinput, um repräsentative PDFs der Energieflüsse auf gröberen Skalen zu erhalten. Die ersten Ergebnisse in der Verwendung der PDFs von Albedo, NDVI, relativer Luftfeuchtigkeit und Windgeschwindigkeit für die Bestimmung von L.E waren sehr ermutigend und zeigten das hohe Potential der Methode. Zusammenfassend lässt sich feststellen, dass die Methode der Ableitung von Oberflächenparametern und Energieflüssen aus Satellitendaten zuverlässige Daten auf verschiedenen zeitlichen und räumlichen Skalen liefert. Die Daten sind für eine detaillierte Analyse der räumlichen Variabilität der Landschaft und für die Beschreibung der subskaligen Heterogenität, wie sie oft in Modellanwendungen benötigt wird, geeignet. Ihre Nutzbarkeit als Inputparameter in Modellen auf verschiedenen Skalen ist das zweite wichtige Ergebnis der Arbeit. Aus Satellitendaten abgeleitete Vegetationsparameter wie der LAI oder die Pflanzenbedeckung liefern realistische Ergebnisse, die zum Beispiel als Modellinput in das Lokalmodell des Deutschen Wetterdienstes implementiert werden konnten und die Modellergebnisse von L.E signifikant verbessert haben. Aber auch thermale Parameter, wie beispielsweise die Oberflächentemperatur aus ETM+ Daten in 30 m Auflösung, wurden als Eingabeparameter eines Soil-Vegetation-Atmosphere-Transfer-Modells (SVAT) verwendet. Dadurch erhält man realistischere Ergebnisse für L.E, die hochaufgelöste Flächeninformationen bieten.
98

Identificação de extensas áreas de culturas agrícolas empregando uma abordagem espectro-temporal utilizando imagens MODIS / Identification of agricultural crop areas extensive using an approach spectro-temporal using MODIS images

Braga, Alessandra Lopes 06 March 2007 (has links)
Made available in DSpace on 2015-03-26T13:28:40Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1954884 bytes, checksum: e05012da0f1e291b4123e380e1682d25 (MD5) Previous issue date: 2007-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Remote sensing images have spatial, spectral, radiometric and temporal characteristics, which become an important tool for agricultural applications, in several aspects. This thesis describes a methodology for classification of extensive agricultural areas, in regional scale, using MODIS (Moderate Resolution Imaging Spectro-radiometer) images. It was used a spectral-temporal surface response, where each pixel of the image is represented in a three-dimensional space and the axes are: time, wavelength and reflectance, respectively. The methodology consists of an interpolation of analytical surfaces, passing through control points, using two types of interpolators (Collocation and Polynomial Trend Surfaces). Through these interpolation methods, the surface coefficients were generated, which describe the distribution of the surface in the three-dimensional space. These coefficients were then used into the classification process. Two classification algorithms were used, the maxima likelihood and artificial neural network classifiers. One of the drawbacks, in supervised classification process, is the acquisition of the reference image. For this work were used three distinct methodologies for its attainment: thematic image sampling from the spatial resolution of 30m to 250m; digitalization of homogeneous polygons on the screen; and neighborhood operation, which consists of the elimination of pixels with neighborhood with high variation on the digital level. Statistical analyses were used in order to validate the results. The results show that the classification using neural networks had the best resulted, even with small training sample size. The results also show the importance of high quality reference image generations. / Imagens do sensoriamento remoto possuem características espaciais, espectrais, radiométricas e temporais, tornando-se assim uma importante ferramenta para aplicações agrícolas nos mais diversos aspectos. Neste sentido, esta dissertação descreve uma metodologia para a classificação de extensas áreas agrícolas, em escala regional, utilizando imagens MODIS (Moderate Resolution Imaging Spectroradiometer). Fez-se uso de superfícies de resposta espectral-temporal, onde cada pixel da imagem é representado em um espaço tridimensional, onde os eixos são respectivamente: o tempo, o comprimento de onda e a refletância. A metodologia consiste na interpolação de uma superfície analítica passando por pontos de controle, usando dois tipos de interpoladores (Collocation e Análise de Tendência Polinomial). Através dessa interpolação obtiveram-se os coeficientes que descrevem a distribuição da superfície no espaço tridimensional, e os mesmos foram utilizados para a classificação das imagens digitais. Para a classificação foram utilizados dois algoritmos, o classificador Gaussiano da Máxima verossimilhança e as Redes Neurais Artificiais. Uma das limitações, no processo de classificação supervisionada, é a aquisição da imagem de referência, assim para este trabalho foram usadas três metodologias distintas para sua obtenção: Reamostragem das imagens temáticas com resolução espacial de 30 para a resolução de 250 metros; Digitalização de polígonos homogêneos em tela; e Operação de vizinhança, que consiste na eliminação de pixels com vizinhança com alta variação no nível digital. Para a avaliação dos resultados obtidos foram utilizados testes e análises estatísticas. Os resultados mostram que as classificações pelas redes neurais apresentam os melhores resultados, até mesmo com poucas amostras de treinamento. Os resultados também mostram importância da alta qualidade na geração da imagem de referência.
99

MODELAGEM DINÂMICA DO CENÁRIO FLORESTAL EM UNIDADES DE PAISAGEM DO BIOMA PAMPA / DYNAMIC MODELING OF FOREST SCENERY IN UNITS OF LANDSCAPE BIOMA PAMPA

Lippert, Diogo Belmonte 21 March 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The construction of a computational model to adequately represent the forest dynamics is still a challenge, since a number of elements acts as driving forces in promoting growth and reducing forest in the state of Rio Grande do Sul is complex yet combine these factors and consider their values in quantitative and qualitative terms to analyze their influence this dynamic. This study aims to relate the spatial distribution of environmental factors and socioeconomic factors on forests with a dynamic model and simulate predictions of localization and quantification of forests in the landscape units macrozones Depressão Central, Cuesta do Haedo and Escudo Sul-Rio-Grandense. The methodology consisted in mapping physical and socioeconomic attributes in use mapping and land cover classification using MODIS digital image and the structuring of a simulation model of the application Dinamica EGO. The results show the evolution of the use and land cover as well as the expansion, reduction and forest maintenance between the periods 2000 to 2006 and from 2006 to 2012, in which the expansion was superior to other processes. Through dynamic modeling, simulating for the year 2024, it was concluded that the forest expansion will continue to occur. The forest will occupy second place in land coverage and its concentration is greater during the macrozones Depressão Central and Escudo Sul-Rio-Grandense. / A construção de um modelo computacional para representar adequadamente a dinâmica florestal ainda é um desafio, visto que uma série de elementos atua como forças direcionadoras promovem a expansão e a redução florestal no Estado do Rio Grande do Sul. Ainda é complexo conjugar esses fatores e considerar seus valores em termos quantitativos e qualitativos para analisar sua influência essa dinâmica. Este estudo tem como objetivo relacionar a distribuição espacial de fatores ambientais e socioeconômicos com as áreas florestais em um modelo dinâmico e, a partir disso, simular prognósticos de localização e quantificação das florestas em unidades de paisagem presentes nas macrozonas Depressão Central, Cuesta do Haedo e Escudo Sul-Rio-Grandense. A metodologia consistiu no mapeamento de atributos físicos e socioeconômicos, no mapeamento do uso e cobertura da terra através da classificação digital de imagens MODIS e na estruturação de um modelo de simulação no aplicativo Dinamica EGO. Os resultados demonstraram a evolução dos padrões de uso e cobertura da terra, bem como os processos de expansão, redução e manutenção florestal entre os períodos de 2000 a 2006 e 2006 a 2012, nos quais a expansão mostrou-se superior aos demais processos. Através da modelagem dinâmica, ao simular cenários para o ano de 2024, foi possível concluir que a expansão florestal continuará ocorrendo. A floresta passará a ocupar o segundo lugar em cobertura da terra e sua concentração tenderá a ser maior nas macrozonas da Depressão Central e do Escudo Sul-Rio-Grandense.
100

Estimativa de produtividade da cana-de-açúcar utilizando dados agrometeorológicos e imagens do sensor MODIS / Yield estimation of sugarcane based on agrometeorological data and MODIS sensor images

SILVA, Anderson Santos da 26 February 2016 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-08-15T13:14:14Z No. of bitstreams: 1 Anderson Santos da Silva.pdf: 1059889 bytes, checksum: ff989424df01788dbda8e075b1d48a91 (MD5) / Made available in DSpace on 2016-08-15T13:14:14Z (GMT). No. of bitstreams: 1 Anderson Santos da Silva.pdf: 1059889 bytes, checksum: ff989424df01788dbda8e075b1d48a91 (MD5) Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / This research is based on estimated and observed agricultural productivity in an area of commercial sugarcane production located at São Francisco’s Agroindustry – AGROVALE S.A., Juazeiro – BA, Brazilian northeast. The new yield estimation models were obtained by multiple linear regression, in which the inputs variables were: irrigation, precipitation, average air temperature, vapor saturation deficit of the air, photoperiod, normalized difference vegetation index (NDVI), leaf area index (LAI) and fractional soil cover (FC). To obtain these models, it was used the statistics program Statística version 10. Futhermore, the meteorological data were obtained from an automatic weather station located at the Farm Brasil Uvas, Juazeiro – BA such as: precipitation (mm), temperature (°C), relative humidity (%), evapotranspiration (mm), current vapor pressure (hPa) and saturation vapor pressure (hPa). The crop yield data and parameters related to crop development were obtained from AGROVALE Agriculture Department. The spectral data, NDVI, IAF and FC, were extracted from MODIS sensor images (Spectroradiometer Imager Moderate Resolution). The data used to models validation were obtained from the same sources previously mentioned. The data were analyzed by mean absolute error (DMA) and mean relative error (DMR). The comparison of yield observed and estimated values showed that the spectral agrometeorological model (SAM) presented the lower and better mean relative error (DMR) with a mean variation of 0.34 %, followed by agrometeorological model with a mean variation of 1.37 % and, finally, the spectral model presented larger mean relatives errors in comparison with other two models, showing a mean variation of 6.58%, approaching AGROVALE’s technicians estimation that presented a mean variation of 6.75%. At the validation’s model for the 2004/2005 crop year, the spectral surpassed the agrometeorological and agrometeorological spectral with average relative errors of 5.05%, while for other models the difference were 15.11% and 16.19%, reflecting a productivity of 93.05 t ha-1 versus 83.19 t ha-1 and 82.13 t ha-1 of agrometeorological and agrometeorologicalspectral models, respectively, for an observed yield of 98 t ha-1. Soon after the 2011/2012 years crop there was a planting renovation with a new variety, with different physiology and consequently a distinct productive power and, from 2013/2014 crop year, the models underestimated the productivity compared to the real. The estimate made by the technicians, based on the crop development since planting until next harvest, showed satisfactory results as well as the tested models. / Esta pesquisa baseou-se na avaliação de produtividade agrícola estimada e observada em uma área de cultivo comercial de cana-de-açúcar localizada na Agroindústria do Vale do São Francisco – AGROVALE S.A., Juazeiro – BA, sertão nordestino. Novos modelos de estimativas de produtividades foram obtidos por regressão linear múltipla utilizando-se, como variáveis de entrada: a irrigação, a precipitação, a temperatura média do ar, o déficit de saturação de vapor do ar, o fotoperíodo, o índice de vegetação por diferença normalizada (NDVI), o índice de área foliar (IAF) e a fração de cobertura do solo (FC). Para obtenção desses modelos utilizou-se o programa estatístico Statística versão 10. Além disso, os meteorológicos foram obtidos na estação meteorológica automática instalada na Fazenda Brasil Uvas, em Juazeiro – BA sendo elas: precipitação, temperatura, umidade relativa, evapotranspiração, pressão atual de vapor e pressão de saturação de vapor. Os dados de rendimento agrícola e parâmetros inerentes ao desenvolvimento da cultura foram disponibilizados pelo Departamento Agrícola da usina AGROVALE. Os dados espectrais: NDVI, IAF e FC foram extraídos de produtos derivados de imagens orbitais do sensor MODIS (Espectrorradiômetro Imageador de Resolução Moderada). Os dados para validação dos modelos também foram obtidos nas mesmas fontes citadas anteriormente. Os dados foram avaliados por meio do cálculo do erro médio absoluto e do erro médio relativo ou percentual. A comparação dos valores observados e estimados de produtividades mostra que o modelo agrometeorológico-espectral (MAE) apresentou as menores e melhores diferenças médias relativas com uma variação média de 0,34%, seguido do modelo agrometeorológico (MA) com uma variação média de 1,37% e por último o modelo espectral (ME) apresentou as maiores diferenças médias relativas, quando comparado com os outros dois modelos obtendo uma variação média de 6,58%, aproximando-se mais da estimativa feita pelos técnicos da usina que apresentou variação média de 6,75%. Na validação dos modelos para o ano-safra de 2004/2005 o espectral superou os agrometeorológico e o agrometeorológico-espectral com diferenças médias relativas na ordem de 5,05% enquanto nos demais modelos as diferenças foram de 15,11% e 16,19%, refletindo numa produtividade de 93,05 t ha-1 contra 83,19 t ha-1 e 82,13 t ha-1 dos modelos agrometeorológicos e agrometeorológico-espectral, respectivamente, para uma produtividade observada de 98 t ha-1. Logo após a safra de 2011/2012 ocorreu uma renovação de plantio com nova variedade, fisiologia diferenciada e, consequentemente, um poder produtivo distinto e a partir da safra de 2013/2014 os modelos subestimaram a produtividade quando comparadas com o real. A estimativa feita pelos técnicos da usina baseada no desenvolvimento da cultura desde o plantio até próximo da colheita, apresentou resultados satisfatórios assim como os modelos testados.

Page generated in 0.0493 seconds