• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of crack-inclusion interaction using moiré interferometry and finite element analysis

Savalia, Piyush Chunilal, January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references.
2

An Experimental Technique for the Study of the Mechanical Behavior of Thin Film Materials at Micro- and Nano-Scale

Tajik, Arash January 2008 (has links)
An experimental technique has been presented to probe the mechanical behavior of thin film materials. The method is capable of tensile testing thin films on substrate and free-standing thin film specimens. A mechanical gripper was designed to address the current challenges in gripping thin film specimens. In order to measure the strain field across the gage section, the moire interferometry technique was used and the respective optical setup was designed. A versatile microfabrication process has been developed to fabricate free-standing dog-bone specimens. Aluminum was used as the model material; however, any other metallization material can be integrated in the process. Thin film specimens have been characterized using SEM, AFM, and TEM. A process has been developed to fabrication diffraction gratings on the specimen by FIB milling. Different grating geometries were fabricated and the diffraction efficiency of the gratings was characterized. The structural damage induced by the Ga+ ions during the FIB milling of the specimens was partially characterized using STEM and EDS. In order to extract the strain field information from the moire interferogram data, a numerical postprocessing technique was developed based on continuous wavelet transforms (CWT). The method was applied on simulated uniform and nonuniform strain fields and the wavelet parameters were tuned to achieve the best spatial localization and strain accuracy.
3

An Experimental Technique for the Study of the Mechanical Behavior of Thin Film Materials at Micro- and Nano-Scale

Tajik, Arash January 2008 (has links)
An experimental technique has been presented to probe the mechanical behavior of thin film materials. The method is capable of tensile testing thin films on substrate and free-standing thin film specimens. A mechanical gripper was designed to address the current challenges in gripping thin film specimens. In order to measure the strain field across the gage section, the moire interferometry technique was used and the respective optical setup was designed. A versatile microfabrication process has been developed to fabricate free-standing dog-bone specimens. Aluminum was used as the model material; however, any other metallization material can be integrated in the process. Thin film specimens have been characterized using SEM, AFM, and TEM. A process has been developed to fabrication diffraction gratings on the specimen by FIB milling. Different grating geometries were fabricated and the diffraction efficiency of the gratings was characterized. The structural damage induced by the Ga+ ions during the FIB milling of the specimens was partially characterized using STEM and EDS. In order to extract the strain field information from the moire interferogram data, a numerical postprocessing technique was developed based on continuous wavelet transforms (CWT). The method was applied on simulated uniform and nonuniform strain fields and the wavelet parameters were tuned to achieve the best spatial localization and strain accuracy.
4

Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire Interferometry

Mollenhauer, David Hilton 22 August 1997 (has links)
The deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches. Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [0₄/90₄]<sub>3s</sub> and [+30₂/-30₂/90₄]<sub>3s</sub>, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+30₂/-30₂/90₄]<sub>3s</sub> specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT. / Ph. D.
5

Experimental and Theoretical Assessment of PBGA Reliability in Conjunction with Field-Use Conditions

Tunga, Krishna Rajaram 09 April 2004 (has links)
With the dramatic advances that have taken place in microelectronics over the past three decades, ball-grid array (BGA) packages are increasingly being used in microsystems applications. BGA packages with area-array configuration have several advantages: smaller footprint, faster signal transmission, testability, reworkability, handling easiness, etc. Although ceramic ball grid array (CBGA) packages have been used extensively in the microsystems industry, the use of plastic ball grid array (PBGA) packages is relatively new, especially for automotive and aerospace applications where harsh thermal conditions prevail. This thesis work has developed an experimental and a theoretical modeling program to study the reliability of two PBGA packages. The physics-based theoretical models take into consideration the time-dependent creep behavior through power law creep and time-independent plastic behavior through multi-linear kinematic hardening. In addition, unified viscoplastic constitutive models are also taken into consideration. The models employ two damage-metrics, namely inelastic strain and inelastic strain energy density, to predict the solder joint fatigue life. The theoretical predictions have been validated through air-to-air in-house thermal cycling tests carried out between 55 and #61616;C and 125 and #61616;C. In addition, laser-moir interferometry has been used to determine the displacement contours in a cross-section of the package at various temperatures. These contours measured through moir interferometry have also been used to validate the thermally-induced displacement contours, predicted by the models. Excellent agreement is seen between the experimental data and the theoretical predictions. In addition to life prediction, the models have been extended to map the field-use conditions with the accelerated thermal cycling conditions. Both linear and non-linear mapping techniques have been developed employing inelastic strain and strain energy density as the damage metric. It is shown through this research that the symmetric MIL-STD accelerated thermal cycles, currently in practice in industry, have to be modified to account for the higher percentage of creep deformation experienced by the solder joints in the field-use conditions. Design guidelines have been developed for such modifications in the accelerated thermal cycles.
6

An investigation of BGA electronic packaging using Moiré interferometry [electronic resource] / by Norman Rivers.

Rivers, Norman. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 87 pages. / Thesis (M.S.M.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: As technology progresses towards smaller electronic packages, thermo-mechanical considerations pose a challenge to package designers. One area of difficulty is the ability to predict the fatigue life of the solder connections. To do this one must be able to accurately model the thermo-mechanical performance of the electronic package. As the solder ball size decreases, it becomes difficult to determine the performance of the package with traditional methods such as the use of strain gages. This is due to the fact that strain gages become limited in size and resolution and lack the ability to measure discreet strain fields as the solder ball size decreases. A solution to the limitations exhibited in strain gages is the use of Moiré interferometry. Moiré interferometry utilizes optical interferometry to measure small, in-plane relative displacements and strains with high sensitivity. / ABSTRACT: Moiré interferometry is a full field technique over the application area, whereas a strain gage gives an average strain for the area encompassed by the gage. This ability to measure full field strains is useful in the analysis of electronic package interconnections; especially when used to measure strains in the solder ball corners, where failure is known to originate. While the improved resolution of the data yielded by the method of Moiré interferometry results in the ability to develop more accurate models, that is not to say the process is simple and without difficulties of it's own. Moiré interferometry is inherently susceptible to error due to experimental and environmental effects; therefore, it is vital to generate a reliable experimental procedure that provides repeatable results. This was achieved in this study by emulating and modifying established procedures to meet our specific application. / ABSTRACT: The developed procedure includes the preparation of the specimen, the replication and transfer of the grids, the use of the PEMI, interpretation of results, and validation of data by finite element analysis using ANSYS software. The data obtained maintained uniformity to the extent required by the scope of this study, and potential sources of error have been identified and should be the subject of further research. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
7

Study of Sn-Ag-Cu reliability through material microstructure evolution and laser moire interferometry

Tunga, Krishna Rajaram 08 July 2008 (has links)
This research aims to understand the reliability of Sn-Ag-Cu solder interconnects used in plastic ball grid array (PBGA) packages using microstructure evolution, laser moiré interferometry and finite-element modeling. A particle coarsening based microstructure evolution of the solder joint material during thermal excursions was studied for extended periods of time lasting for several months. The microstructure evolution and particle coarsening was quantified, and acceleration factors were determined between benign field-use conditions and accelerated thermal cycling (ATC) conditions for PBGA packages with different form factors and for two different lead-free solder alloys. A new technique using laser moiré interferometry was developed to assess the deformation behavior of Sn-Ag-Cu based solder joints during thermal excursions. This technique can used to estimate the fatigue life of solder joints quickly in a matter of few days instead of months and can be extended to cover a wide range of temperature regimes. Finite-element analysis (FEA) in conjunction with experimental data from the ATC for different lead-free PBGA packages was used to develop a fatigue life model that can be used to predict solder joint fatigue life for any PBGA package. The proposed model will be able to predict the mean number of cycles required for crack initiation and crack growth rate in a solder joint.

Page generated in 0.0977 seconds