31 |
Effect of surfactant structure on properties of oil/water interfaces : A coarse-grained molecular simulation study.Rekvig, Live January 2004 (has links)
<p>The elastic properties of oil/water/surfactant interfaces play an important role in the phase behaviour of microemulsions and for the stability of macroemulsions. The aim of this thesis is to obtain an understanding of the relationship between the structure of the surfactant molecules, the structure of the interface, and macroscopic interfacial properties. To achieve this aim, we performed molecular simulations of oil/water/surfactant systems. We made a quantitative comparison of various model surfactants to determine how structural changes affect interfacial properties and film rupture. The model consists of water, oil, head, and tail beads, and surfactants are constructed by coupling head and tail beads with harmonic springs. We used a hybrid dissipative particle dynamics-Monte Carlo scheme. The former was used to simulate particle trajectories and the Monte Carlo scheme was used to mimic experimental conditions: bulk-interface phase equilibrium, tensionless interfaces in microemulsions, and the surface force apparatus.</p><p>A detailed comparison of various non-ionic model surfactants showed how structural changes affect interfacial properties:</p><p>Comparison between linear and branched surfactants showed that the efficiency of adsorption is higher for linear surfactants, although branched surfactants are more efficient at a given surface density. Linear surfactants can be more efficient also at the same surface density if the head group is sufficiently soluble in oil, because low head-oil repulsion makes the branched isomers stagger at the interface. The bending rigidity is higher for linear surfactants. Furthermore, branched surfactants make oil droplets coalesce more easily than linear surfactants do, but linear and branched surfactants have roughly the same effect on water droplet coalescence. </p><p>Comparison of linear surfactants with varying chain lengths showed that longer surfactants have a lower surface tension and higher bending rigidity. The increase in rigidity with chain length follows a power law, but the exponent is higher for surfactant monolayers at a fixed density than at a fixed tension. Longer tails and/or denser monolayers influence the stability of water droplets in a positive direction, and the stability of oil droplets in a negative direction. </p><p>Addition of cosurfactant showed that mixed monolayers have a lower bending rigidity than pure monolayers at the same average chain length and tension. Cosurfactants have a negative effect on the stability of water droplets, and a positive effect on the stability of oil droplets.</p> / Paper I reprinted with kind permission of EDP Sciences. Paper III reprinted with kind permission of the American Institute of Physics. Paper IV reprinted with kind permission of the American Physics Society.
|
32 |
Effect of surfactant structure on properties of oil/water interfaces : A coarse-grained molecular simulation study.Rekvig, Live January 2004 (has links)
The elastic properties of oil/water/surfactant interfaces play an important role in the phase behaviour of microemulsions and for the stability of macroemulsions. The aim of this thesis is to obtain an understanding of the relationship between the structure of the surfactant molecules, the structure of the interface, and macroscopic interfacial properties. To achieve this aim, we performed molecular simulations of oil/water/surfactant systems. We made a quantitative comparison of various model surfactants to determine how structural changes affect interfacial properties and film rupture. The model consists of water, oil, head, and tail beads, and surfactants are constructed by coupling head and tail beads with harmonic springs. We used a hybrid dissipative particle dynamics-Monte Carlo scheme. The former was used to simulate particle trajectories and the Monte Carlo scheme was used to mimic experimental conditions: bulk-interface phase equilibrium, tensionless interfaces in microemulsions, and the surface force apparatus. A detailed comparison of various non-ionic model surfactants showed how structural changes affect interfacial properties: Comparison between linear and branched surfactants showed that the efficiency of adsorption is higher for linear surfactants, although branched surfactants are more efficient at a given surface density. Linear surfactants can be more efficient also at the same surface density if the head group is sufficiently soluble in oil, because low head-oil repulsion makes the branched isomers stagger at the interface. The bending rigidity is higher for linear surfactants. Furthermore, branched surfactants make oil droplets coalesce more easily than linear surfactants do, but linear and branched surfactants have roughly the same effect on water droplet coalescence. Comparison of linear surfactants with varying chain lengths showed that longer surfactants have a lower surface tension and higher bending rigidity. The increase in rigidity with chain length follows a power law, but the exponent is higher for surfactant monolayers at a fixed density than at a fixed tension. Longer tails and/or denser monolayers influence the stability of water droplets in a positive direction, and the stability of oil droplets in a negative direction. Addition of cosurfactant showed that mixed monolayers have a lower bending rigidity than pure monolayers at the same average chain length and tension. Cosurfactants have a negative effect on the stability of water droplets, and a positive effect on the stability of oil droplets. / Paper I reprinted with kind permission of EDP Sciences. Paper III reprinted with kind permission of the American Institute of Physics. Paper IV reprinted with kind permission of the American Physics Society.
|
33 |
Control-oriented modeling of discrete configuration molecular scale processes: Applications in polymer synthesis and thin film growthOguz, Cihan 08 November 2007 (has links)
The objective of this thesis is to propose modeling techniques that enable the design and optimization of material systems which require descriptions via molecular simulations. These kinds of systems are quite common in materials and engineering research. The first step in performing design and optimization tasks on such systems is the development of accurate simulation models from experimental data. In the first part of this thesis, we present a novel simulation model for the hyperbranched polymerization process of difunctional A2 oligomers, and B3 monomers. Unlike the previous models developed by other groups, our model is able to simulate the evolution of the polymer structure development under a wide range of synthesis routes, and in the presence of cyclization and endcapping reactions. Furthermore, our results are in agreement with the experimental data, and add insight into the underlying kinetic mechanisms of this polymerization process. The second major step in our work is the development of reduced order process models that are suitable for design and optimization tasks, using simulation data. We illustrate our approach on a stochastic simulation model of epitaxial thin film deposition process. Compared to the widely used approach called equation-free modeling, our method requires fewer assumptions about the dynamic system. The assumptions required in equation-free modeling include a wide separation between the time scales of low and high order moments describing the system state, and the accuracy of the time derivatives of system properties computed from molecular simulation data, despite the potentially large amount of fluctuations in stochastic simulations. Unlike the recent similar studies, our study also includes the analysis of prediction error which is important to evaluate the predictions of the reduced order model, compared to the high dimensional molecular simulations. Hence, we address two major issues in this thesis: development of simulation models from molecular experimental data, and derivation of reduced order models from molecular simulation data. These two aspects of modeling are both necessary to design and optimize processing conditions of materials for which continuum level descriptions are not available or accurate enough.
|
34 |
Understanding of adsorption mechanism and tribological behaviors of C18 fatty acids on iron-based surfaces : a molecular simulation approachLoehle, Sophie 04 February 2014 (has links) (PDF)
The current requirements in automotive lubrication impose complex formulation. Among all the additives present in oil, the presence of molybdenum dithiocarbamate and zinc dithiophosphate, both tribological additives containing sulfur and phosphorous is found. For environmental reasons, it is important to reduce or eliminate the presence of these two elements contained in oil. Organic molecules based on carbon, oxygen and hydrogen seems to be good candidate. The lubrication mechanism of fatty acids (e.g. stearic, oleic and linoleic acids) is revisited with a new approach combining experimental and computational chemistry studies. First, the adsorption mechanisms of fatty acids on iron-based surfaces are investigated by Ultra-Accelerated Quantum Chemistry Molecular Dynamics simulations. The adsorption of fatty acids on iron oxide surface occurred through the acid group. Depending on the nature of the substrate, on the density of the film and on the tilt angle between the molecule and the surface, different adsorption mechanisms (physisorption and chemisorption) can occur. Stearic acid molecules form a close-packed and well-arranged monolayer whereas unsaturation acids cannot because of steric effects induced by double carbon-carbon bonds. The friction process favors the formation of carboxylate function. Results are confirmed by surface analysis (XPS and PM-IRRAS). Tribological properties of pure fatty acids, blended in PAO 4 and mixture of saturated/unsaturated acids are studied by MD simulations and tribotests. Low friction coefficient with no visible wear is reported for pure stearic acid and single stearic acid blended in PAO 4 at 1%w at high temperature. This lubricating behavior is inhibited in the presence of unsaturated acids, especially at 150 °C. MD simulation results show a faster diffusion toward the surface for unsaturated fatty acids than for stearic acid at all studied temperature.
|
35 |
Caractérisation des oxydes nanoporeux contenant des ions lourds en milieu aqueux / Characterization of nanoporous oxides containing aqueous heavy metallic ionsLouisfrema, Wilfired 21 September 2016 (has links)
Les aluminosilicates poreux cristallins tels que les zéolithes cationiques de type faujasite sont largement étudiés en raison de leurs propriétés d’adsorption, d’échange ionique et de catalyse, ce qui leurs valent d’être engagées dans de nombreuses applications industrielles, qui font intervenir de plus en plus de cations multivalents (détergents/ adoucissants, craquage catalytique, décontamination,...). Ces différentes applications industrielles ont en commun les propriétés d’adsorption, résultant d’une part de la taille de leurs pores du même ordre de grandeur que les espèces introduites, et d’autre part de leur composition chimique qui conduit à des charges de charpente, à l’origine de sites de forte interaction ou de répulsion localisés. Dans ces applications, les zéolithes sont hydratées. L’eau est associée aux processus mis en jeu et influence ainsi les autres propriétés du matériau. La modélisation moléculaire est un outil de choix pour prédire et comprendre les propriétés microscopiques du matériau hydraté, qui sont difficilement accessibles expérimentalement. Ce travail de modélisation porte plus précisément sur le comportement des cations multivalents dans les matériaux zéolithiques hydratés, en collaboration avec des expérimentateurs. Notre étude sur une zéolithe faujasite Y a permis tout d’abord de clarifier la migration des cations sodium au cours de la déshydratation, et de prédire la localisation cationique dans le matériau hydraté en présence d’ions bivalents. De plus, nous avons montré qu’il était possible de rationaliser conjointement la migration des cations et les déformations structurales dans la faujasite au cours de l’adsorption d’eau. À cet effet, nous avons développé une méthode d’analyse pour la localisation cationique. La bonne performance d’un champ de force polarisable démontrée au cours de ce travail ouvre la voie à l’étude de la dynamique globale du système, en permettant le suivi de la migration cationique simultanément à la déformation de la charpente. A plus long terme, cette approche pourra être étendue à d’autres ions multivalents d’intérêt (terres rares, éléments f, ...). / Porous crystalline aluminosilicates such as cationic zeolites, are widely studied because of their adsorption, ion exchange and catalytic properties, which explain their use in many industrial applications. Examples of the latter, which involve in particular multivalent cations, include detergents/softeners, catalytic cracking, or decontamination. Such industrial applications of zeolites all exploit their adsorption properties, which vary as a function of the pore size, comparable to the adsorbing molecules, or chemical composition, which results in charges within the framework, and in turn strong binding or repulsive sites. Importantly, in such applications zeolites are hydrated. Water is involved in the microscopic processes and thus influences all properties of the material. Molecular modeling is a weapon of choice to predict and understand the microscopic properties of the hydrated material, which are difficult to access experimentally. More precisely, the present modeling work deals with the behavior of multivalent cations in hydrated zeolites, in collaboration with experimentalists. Our study on zeolite Y faujasite first allowed us to clarify the migration of sodium cations upon dehydration and to predict the cation localisation in the hydrated material in the presence of divalent cations. Furthermore, we rationalized the coupled migration of cations and deformation of the framework upon water adsorption. To this end, we have developed a new method for the analysis of cation localization. The good performance of a polarizable force field demonstrated here paves the way for the study of the dynamics of the whole system, following in particular the simultaneous migration of cations and deformation of the framework. Such an approach could be later extended to other multivalent ions of industrial interest (rare Earths, f-block elements, ...).
|
36 |
Improved Theory of Clathrate HydratesSrikanth, Ravipati January 2015 (has links) (PDF)
The current theoretical understanding of thermodynamics of clathrate hydrates is based on the van der Waals and Plattew (vdWP) theory developed using statistical thermodynamics approach. vdWP theory has been widely used to predict the phase equilibrium of clathrate hydrates over the decades. However, earlier studies have shown that this success could be due to the presence of a large number of parameters.
In this thesis, a systematic and a rigorous analysis of vdWP theory is per-formed with the help of Monte Carlo molecular simulations for methane hydrate. The analysis revealed that long range guest-water interactions and guest-guest interactions are important, Monte Carlo integration to is superior to the spherical shell approximation for the Langmuir constant calculation and even after inclusion of all the interactions and using Monte Carlo integration for Langmuir constant, the vdWP theory still fails to regress parameters correctly. This failure of vdWP theory is attributed to the rigid water lattice approximation.
To address the rigid water lattice approximation, a new method is proposed. In the proposed method, the Langmuir constant is computed in flexible water lattice, by considering the movement of water molecules. The occupancy values predicted using the proposed method are in excellent agreement with the values obtained from Monte Carlo molecular simulations for variety of hydrates, methane, ethane, carbon dioxide and tetrahydrofuran(THF) hydrates .
In addition to small guest molecules like methane, ethane etc. which are mod-
heled as rigid, the method is extended for large guest molecules like propane and isobutane, using configurationally bias Monte Carlo method. The phase equilib-rium and occupancy along the phase equilibrium predictions from vdWP theory are compared with the exact phase equilibrium computed from Monte Carlo molecular simulations. This comparison is done for a wide variety of hydrate systems, single hydrates , binary hydrates and quaternary hydrate. In all the cases, the vdWP theory with the flexible water lattice showed significant improvement over the rigid lattice model with significantly less absolute relative deviations in pressure.
Guest-cavity interactions for hydrates are calculated using abinitio calculations. In general, these guest-cavity interaction from first principle calculations are used to develop classical force field parameters in alternative to Lorentz-Berthelot rule. In the study, comparison of guest-cavity interactions from MP2 and CCSD(T) methods revealed that less expensive MP2 method, which is generally used, is insouciant to capture the dispersion interactions accurately. These guest-cavity interactions using CCSD(T) method extrapolated to complete basis set are used to model the interaction parameters between cyclopropane and water. The potential parameters obtained from ab-initio calculations are used in the calculation of Langmuir constant using vdWP theory. Langmuir constant calculated using vdWP theory with flexible water lattice gave close agreement with the values obtained from experimental occupancy data.
In addition, simulation methodology to calculate ternary hydrate phase equilibrium is extended for binary hydrates. Simulations have been successful in the prediction of sIsII and sII-sI structural transitions as observed in experiments. Predicted methane-ethane binary hydrate is also compared with the available experimental phase equilibrium data. The phase equilibrium obtained from simulations showed very good qualitative agreement with the experimental data.
|
37 |
Hybrid Simulation Methods for Systems in Condensed PhaseFeldt, Jonas 08 March 2018 (has links)
No description available.
|
38 |
Etude de la solubilité de l’hydrogène dans des liquides confinés / Study of hydrogen solubility in nano-liquid confinedClauzier, Stéphanie 18 December 2012 (has links)
L’adsorption des gaz dans les solides micro/mésoporeux et la solubilisation des gazdans les liquides sont des phénomènes physiques très bien connus. En revanche, lasolubilisation des gaz dans un liquide confiné à l’intérieur d’un solide (système hybride) estun domaine très peu étudié, malgré des applications importantes, notamment dans l’extractiondu pétrole, les ciments ou encore les réacteurs catalytiques triphasiques. Nous avons montréexpérimentalement que la solubilité du CO2 et H2 augmente quand la taille de pores du solideest de l’ordre du nanomètre. Un des objectifs de cette thèse était d’optimiser le couple solidesolvant(système hybride) et les conditions de température et de pression pour augmenter lestockage de H2 pour les applications de stockages. Dans le système Aérogel/éthanol à 50 barset 0°C, la solubilité de H2 est 8,5 fois supérieure à la solubilité mesurée dans le liquide seul,représentant une masse de 6,2g d’hydrogène stocké par kg de solide. Le second objectif étaitde comprendre les paramètres clefs de ce phénomène apparent de « sursolubilité » dans lessystèmes hybrides. En comparant différents solides poreux (zeolithes, MOF, MCM, silice),nous avons montré le rôle majeur des propriétés d’interfaces. Les phénomènes desolubilisation ont été modélisés à l’échelle moléculaire par GCMC et validéesexpérimentalement. Il apparait que le mécanisme de sursolubilisation provient d’unestructuration en couche des molécules de solvants en interactions avec les parois dumésopore. / The adsorption of gases in micro/mesoporous materials and solubility of gases inliquids are physical phenomena well known. On the other hand, solubility of gases in liquidsconfined inside a solid (hybrid system) has not been entensively studied, despite the importantapplications such systems can have in the areas of oil extraction, cement and triphasiccatalytic reactors. We have shown experimentally that the solubility of CO2 and H2 increaseswhen the size of the pores of the solid is in the nanometer range. One of the objectives of thisthesis was to optimize the couple a solid and a solvent into a hybrid system and the conditionsin which to increase the H2 storage capacity. In an aerogel/ethanol hydrid system at 50 barand 0 ° C, the solubility of H2 is 8.5 times greater than the solubility measured in the singleliquid, representing a mass of 6.2 g of hydrogen stored per kg of solid. The second objectivewas to understand this apparent phenomenon of oversolubility and the key parameters in thehybrid systems. By comparing different porous solids (zeolites, MOFs, MCM-41 and silica),we have shown the major role of the properties of interfaces. The phenomena of solubilsationwas modelled by GCMC and experimentally validated. It appears that the mechanism ofoversolubilisation comes from structuring the solvent molecules in interactions with the wallsof the mesopore layered.
|
39 |
Computational Study Of Long Chain N-alkane Binary Mixture Adsorption In Silicalite Under Conditions Of High LoadingGanesh, Hari S 12 1900 (has links) (PDF)
The study of adsorption of n-alkanes in zeolite pores represents both a fundamental problem in molecular thermodynamics and also a problem with substantial industrial importance. Until mid 19th century, adsorption was mainly used for purification processes such as removal of H2S and mercaptans from natural gas and organic matter from water. However, with the emergence of molecular sieves, especially zeolites, adsorption processes have become an attractive alter- native to distillation in large scale separation of mixtures that have low relative volatility into streams each enriched in one of the components. The pore di- ameters of molecular sieves are of the order of molecular diameters and hence selective adsorption can be achieved by both a difference in adsorbate-adsorbent interactions of various species and obstruction by the pore walls to some of the species in the mixture.
The existing adsorption theories such as Henry’s law, Langmuir adsorption model and BET isotherm are incapable of predicting the adsorption isotherms of n-alkanes in zeolite pores. The reason is that in microporous adsorbents, the sorbate molecular mechanisms are influenced by geometrical constraints also. This limitation in the use of theory can be overcome by developing a molecular model and using computers to mimic the real system. This nature of simulation is called molecular simulations. With the development of advanced algorithms, improved force-field parameters and very high computational power of present day computers, molecular simulations have become an important tool in studying adsorption on micro-porous materials.
Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation.
These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. The underlying molecular mechanisms responsible for selective uptake of one of the components cannot be obtained from experiments but can be realized through simulations. Therefore, in this study, the selective uptake of lighter component during liquid phase adsorption of C14/C15 and C15/C16 n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand canonical Monte Carlo (CB- GCMC) molecular simulation technique and a course-grained siting analysis. The simulations are conducted under conditions of low and high loading. The siting pattern of the adsorbates inside the zeolite pores is used to explain the selectivity as seen in experiments.
|
40 |
Využití molekulárních simulací při komplexní strukturní analýze vrstevnatých materiálů / Application of Molecular Simulations in Complex Structural Analysis of Layered MaterialsVeteška, Marek January 2015 (has links)
Title: Application of Molecular Simulations in Complex Structural Analysis of Layered Materials Author: RNDr. Marek Veteška Department: Department of Chemical Physics and Optics Supervisor: RNDr. Miroslav Pospíšil, Ph.D., Dept. of Chemical Physics and Optics Abstract: Techniques of molecular simulations were used together with experimental measurements (X-ray diffraction, thermogravimetry, infrared spectroscopy, elemental analysis and others) to clarify the structure properties of various types of layered materials. The structure of Zn-Al-layered double hydroxide intercalated by pyrenetetra- sulfonate acid was solved. Depending on the relative humidity, the samples showed different arrangements with three planes of water molecules and with either one or two planes of pyrenetetrasulfonate anions. At the same time considerable variability of anions arrangement was demonstrated. The adsorption behavior of natural montmorillonite and montmorillonite modified by tetramethylammonium cations in relation to aniline and phe- nol was explored. Adsorption features differed according to both the type of adsorbed molecules and the type of adsorbents. An important role was played by the plane of water molecules right above the surface which medi- ated adsorption of anilines. The water plane area was reduced by...
|
Page generated in 0.1023 seconds