1 |
Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock MethodMiri, Seyedalireza 11 January 2019 (has links)
Moment methods from the kinetic theory of gases exist as an alternative to the Navier-Stokes model. Models in this family are described by first-order hyperbolic PDEs with local relaxation. They provide a natural treatment for non-equilibrium effects and expand the regime for which the model is physically applicable past the
Navier-Stokes level (when the continuum assumption breaks down).
Discontinuous-Galerkin (DG) methods are very well suited for distributed parallel solution of first-order PDEs. This is because the optimal locality of the method
minimizes needed communication between computational processes. One highly efficient, coupled space-time DG method that achieves third-order accuracy in both
space and time while using only linear elements is the discontinuous-Galerkin Hancock (DGH) scheme, which was specifically designed for the efficient solution of PDEs resulting from moment closures. Third-order accuracy is obtained through the use of a technique originally proposed by Hancock. The combination of moment methods with the DGH discretization leads to a very efficient numerical treatment for viscous compressible gas flows that is accurate both in and out of local thermodynamic equilibrium.
This thesis describe the first-ever implementation of this scheme for the solution
of moment equations on large-scale distributed-memory computers. This implementation uses solution-directed automatic mesh refinement to increase accuracy while reducing cost. A linear hyperbolic-relaxation equation is used to verify the order of accuracy of the scheme. Next a supersonic compressible Euler case is used to demonstrate the mesh refinement as well as the scheme’s ability to capture sharp discontinuities. Third, a moment-closure is then used to compute a viscous mixing layer. This serves to demonstrate the ability of the first-order PDEs and the DG scheme to efficiently compute viscous solutions. A moment-closure is used to compute the solution for Stokes flow past a circular cylinder. This case reinforces the hyperbolic PDEs’ ability to accurately predict viscous phenomena. As this case is very low speed, it also demonstrates the numerical technique’s ability to accurately solve problems that are ill-conditioned due to the extremely low Mach number. Finally, the parallel efficiency of the scheme is evaluated on Canada’s largest supercomputer.
It may be surprising to some that viscous flow behaviour can be accurately predicted by first-order PDEs. However, the applicability of hyperbolic moment methods to both continuum and non-equilibrium gas flows is now well established. Such a first-order treatment brings many physical and computational advantages to gas flow prediction.
|
2 |
Algebraic Methods for the Estimation of Statistical DistributionsGrosdos Koutsoumpelias, Alexandros 15 July 2021 (has links)
This thesis deals with the problem of estimating statistical distributions from data. In the first part, the method of moments is used in combination with computational algebraic techniques in order to estimate parameters coming from local Dirac mixtures and their convolutions. The second part focuses on the nonparametric setting, in particular on combinatorial and algebraic aspects of the estimation of log-concave distributions.
|
3 |
Analysis of multidimensional radiating structures by the spatial Fourier transform and computational electromagnetics / Analyse de structures rayonnantes multidimensionnelles avec la transformée de Fourier spatiale et la méthode des momentsEmidio, Fernando 19 July 2013 (has links)
Ce manuscrit présente les travaux de recherche qui concernent l'analyse et la synthèse de structures rayonnantes multidimensionnelles en utilisant une approche qui combine méthode des moments et la transformée de Fourier spatiale. La distribution source (courant électrique) et le diagramme de rayonnement sont liées par la transformée de Fourier spatiale - la théorie de la Relation de Fourier (FR). La distribution des courants est déterminée en utilisant une méthode d'analyse en électromagnétisme (EM), à savoir la Méthode des Moments (MoM). Des travaux antérieurs utilisant la théorie FR ont été réalisés par d'autres auteurs sur des réseaux linéaires - uniformément espacés ou non uniformes. Les sources radiantes élémentaires des dipoles électriques filaires. Les travaux actuels se développent en utilisant la théorie FR à deux et trois dimensions sur des structures réelles. En utilisant la méthode MoM nous pouvons prendre en compte le rayon du fil, sur n'importe quel point d'excitation (générateur de tension ou onde incidente) et le couplage mutuel entre les éléments, créant ainsi un modèle électromagnétique réaliste pour la structure d'antenne / This manuscript presents the research work in the analysis and synthesis of multidimensional radiating structures using an approach that combines Method of Moments and Spatial Fourier Transform. The source distribution (electric current) and radiation pattern are related by the spatial Fourier Transform - Fourier Relation theory (FR). Current distribution is determined using Computational Electromagnetics (CEM), namely Method of Moments (MoM). Previous work using FR theory was done by other authors on linear arrays – uniformly or nonuniformly spaced elemental radiators laid on a straight line. Present work expands FR theory to two and three dimensions on real-world structures. By using MoM we can take into account wire radius, excitation on any point (voltage generator or incident wave) and mutual coupling between elements, thus creating a realistic electromagnetic model for the antenna structure
|
4 |
A Framework for Mesh Refinement Suitable for Finite-Volume and Discontinuous-Galerkin Schemes with Application to Multiphase Flow PredictionDion-Dallaire, Andrée-Anne 26 May 2021 (has links)
Modelling multiphase flow, more specifically particle-laden flow, poses multiple challenges. These difficulties are heightened when the particles are differentiated by a set of “internal” variables, such as size or temperature. Traditional treatments of such flows can be classified in two main categories, Lagrangian and Eulerian methods. The former approaches are highly accurate but can also lead to extremely expensive computations and challenges to load balancing on parallel machines. In contrast, the Eulerian models offer the promise of less expensive computations but often introduce modelling artifacts and can become more complicated and expensive when a large number of internal variables are treated. Recently, a new model was proposed to treat such situations. It extends the ten-moment Gaussian model for viscous gases to the treatment of a dilute particle phase with an arbitrary number of internal variables. In its initial application, the only internal variable chosen for the particle phase was the particle diameter. This new polydisperse Gaussian model (PGM) comprises 15 equations, has an eigensystem that can be expressed in closed form and also possesses a convex entropy. Previously, this model has been tested in one dimension. The PGM was developed with the detonation of radiological dispersal devices (RDD) as an immediate application. The detonation of RDDs poses many numerical challenges, namely the wide range of spatial and temporal scales as well as the high computational costs to accurately resolve solutions. In order to address these issues, the goal of this current project is to develop a block-based adaptive mesh refinement (AMR) implementation that can be used in conjunction with a parallel computer. Another goal of this project is to obtain the first three-dimensional results for the PGM. In this thesis, the kinetic theory of gases underlying the development of the PGM is studied. Different numerical schemes and adaptive mesh refinement methods are described. The new block-based adaptive mesh refinement algorithm is presented. Finally, results for different flow problems using the new AMR algorithm are shown, as well as the first three-dimensional results for the PGM.
|
5 |
Understanding and Improving Moment Method Scattering SolutionsDavis, Clayton Paul 30 November 2004 (has links) (PDF)
The accuracy of moment method solutions to electromagnetic scattering problems has been studied by many researchers. Error bounds for the moment method have been obtained in terms of Sobolev norms of the current solution. Motivated by the historical origins of Sobolev spaces as energy spaces, it is shown that the Sobolev norm used in these bounds is equivalent to the forward scattering amplitude, for the case of 2D scattering from a PEC circular cylinder. A slightly weaker relationship is obtained for 3D scattering from a PEC sphere. These results provide a physical meaning for abstract solution error bounds in terms of the power radiated by the error in the current solution. It is further shown that bounds on the Sobolev norm of the current error imply a bound on the error in the computed backscattering amplitude. Since Sobolev-based error bounds do not provide the actual error in a solution nor identify its source, the error in typical moment method scattering solutions for smooth cylindrical geometries is analyzed. To quantify the impact of mesh element size, approximate integration of moment matrix elements, and geometrical discretization error on the accuracy of computed surface currents and scattering amplitudes, error estimates are derived analytically for the circular cylinder. These results for the circular cylinder are empirically compared to computed error values for other smooth scatterer geometries, with consistent results obtained. It is observed that moment method solutions to the magnetic field integral equation are often less accurate for a given grid than corresponding solutions to the electric field integral equation. Building from the error analysis, the cause of this observation is proposed to be the identity operator in the magnetic formulation. A regularization of the identity operator is then derived that increases the convergence rate of the discretized 2D magnetic field integral equation by three orders.
|
6 |
A hybrid MoM/PO technique with large element PONazo, Syanda 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Radar Cross Section (RCS) is an important parameter in radar engineering.
Often, electrically large structures are of interest in RCS analysis due to the
high operating frequencies of radar systems. Simulation of these problems can
be more e cient than measurement due to the cost associated with measurement.
The Method of Moments/Physical Optics (MoM/PO) hybrid method
combines the advantages of the MoM and PO, making it suited to solving
electrically large problems that may contain some small complex detail. The
requirement for high meshing resolution when analysing some electromagnetic
problems, however, signi cantly increases memory requirements. As a result,
the hybrid MoM/PO becomes computationally expensive for electrically large
problems. In this work, a linear phase term is introduced into the RWG basis
function formulation of the MoM/PO hybrid. The addition of the linear
phase term allows the use of large triangular mesh elements in the PO region,
resulting in the analysis of electrically large problems. The bene t of this
formulation is that it allows a reduction in computational cost whilst maintaining
the accuracy of the hybrid MoM/PO. This improved hybrid is tested
on various planar test cases and results show that it attains the same level of
accuracy as the original MoM/PO hybrid. / AFRIKAANSE OPSOMMING: Radardeursnit is 'n belangrike parameter in radaringenieurswese. As gevolg
van die hoë frekwensies wat deur baie radarstelsels gebruik word, is elektriesgroot
probleme dikwels van belang in die berekening van die radardeursnit van
teikens. Die modellering en berekening van die radardeursnit van teikens kan
meer kostedoeltre end as metings wees, as gevolg van die beduidende koste
van radardeursnitmetings. Die hibriede Moment-Metode/Fisiese-Optika tegniek
kombineer die voordele van die twee tegnieke, wat dit geskik maak vir
elektries-groot probleme met klein, komplekse detail. Indien die gewone benadering
egter gevolg word om 'n hoë resolusie faset-model te gebruik, bly
dit berekeningsintensief met groot rekenaar geheuevereistes vir elektries-groot
probleme. In hierdie studie word 'n lineêre fase term ingesluit in die formulering
van die Rao-Wilton-Glisson (RWG) basisfunksies vorm van die hibriede
Moment-Metode/Fisiese-Optika tegniek. Die toevoeging van die lineêre fase
term maak dit moontlik om groot driehoekfasette in die Fisiese-Optika gebied
te gebruik, wat beteken dat elektries-groot probleme makliker opgelos kan
word. Die voordeel van hierdie nuwe formulering is dat die berekeningslas en
-tyd verminder word terwyl die akkuraatheid van die oorspronklike hibriede
Moment-Metode/Fisiese-Optika tegniek behou word. Hierdie verbeterde hibriede
tegniek word getoets aan die hand van verskeie platvlak toetsgevalle en
die resultate dui daarop dat die akkuraatheid vergelykbaar is met die van die
oorspronklike hibriede Moment-Metode/Fisiese-Optika tegniek.
|
7 |
Numerische Berechnung elektromagnetischer Felder - Erweiterung einer Hybridmethode aus Momentenmethode und Einheitlicher Geometrischer Beugungstheorie um die Verallgemeinerte MultipoltechnikBalling, Stefan 30 October 2007 (has links) (PDF)
Drei numerische Feldberechnungsverfahren - die Momentenmehtode, die Einheitliche Geometrische Beugungstheorie und die Verallgemeinerte Multipoltechnik - werden schrittweise zu einer Erweiterten Hybridmethode (EHM) kombiniert. Dabei wird jeder einzelne Kombinationsschritt anschaulich anhand von Beispielen erläutert, die den Vorteil der EHM verdeutlichen: Mit diesem Verfahren lassen sich bestimmte Anordnungen äußerst effektiv analysieren.
|
8 |
Numerische Berechnung elektromagnetischer Felder - Erweiterung einer Hybridmethode aus Momentenmethode und Einheitlicher Geometrischer Beugungstheorie um die Verallgemeinerte MultipoltechnikBalling, Stefan 16 May 2007 (has links)
Drei numerische Feldberechnungsverfahren - die Momentenmehtode, die Einheitliche Geometrische Beugungstheorie und die Verallgemeinerte Multipoltechnik - werden schrittweise zu einer Erweiterten Hybridmethode (EHM) kombiniert. Dabei wird jeder einzelne Kombinationsschritt anschaulich anhand von Beispielen erläutert, die den Vorteil der EHM verdeutlichen: Mit diesem Verfahren lassen sich bestimmte Anordnungen äußerst effektiv analysieren.
|
9 |
Modélisation et étude de l’évaporation et de la combustion de gouttes dans les moteurs à propergol solide par une approche eulérienne Multi-Fluide / Eulerian Multi-Fluid modeling and simulation of evaporation and combustion of polydisperse sprays in solid rocket motorsSibra, Alaric 27 November 2015 (has links)
En propulsion solide, l'ajout de particules d'aluminium dans le propergol améliore de façon significative les performances du moteur grâce à une augmentation sensible de la température de chambre. La présence de gouttes d'aluminium et de résidus d'alumine de différentes tailles et en quantité importante a un impact notoire sur le fonctionnement du moteur. Dans cette optique, nous souhaitons obtenir une meilleure prévision de la stabilité de fonctionnement en cas de déclenchement d'instabilités d'origine aéroacoustique ou thermoacoustique. Nous visons des calculs plus précis de l'étendue de la zone de combustion, de la chaleur dégagée par la combustion distribuée des gouttes et de la distribution en taille des résidus. Nos efforts ont porté sur la modélisation des échanges entre la phase gazeuse et cette phase dispersée composée de gouttes de nature et de taille très diverses. Le paramètre taille pilotant la dynamique du spray et le couplage avec le gaz, le suivi précis des changements de taille est un enjeu majeur.Dans cette contribution, nous avons choisi une approche cinétique pour la description des sprays polydisperses. L'équation cinétique de Williams-Boltzmann utilisée pour suivre l'évolution des propriétés du spray est résolue par une approche eulérienne. Les méthodes Multi-Fluide (MF) traitent naturellement les changements de taille tels que l'évaporation et la coalescence. Ces méthodes reposent sur une intégration continue de la variable taille sur des intervalles fixes appelés sections sur lesquels nous pouvons dériver des systèmes d'équations de conservation. Chaque système est vu comme un fluide qui est en couplage fort avec la phase gazeuse via des termes sources.Nous avons travaillé sur une méthode MF à deux moments en taille basée sur une famille de fonctions de forme polynomiale pour reconstruire la distribution en taille au sein des sections. Cette approche d'ordre deux en temps et en espace s'avère performante car elle décrit avec précision l'évolution de la distribution avec un nombre modéré de sections. Un travail original a été mené afin d'étendre l'approche MF à des gouttes bicomposants. Cette méthode ouvre la voie à des modèles de combustion des gouttes d'aluminium plus représentatifs. Dans le contexte des simulations instationnaires, nous avons porté une attention particulière à l'emploi d'une stratégie numérique robuste et précise pour le couplage entre les phases modélisées par une approche Euler-Euler. Nous montrons qu'une méthode de splitting séparant le traitement du transport des phases gazeuse/dispersée de celui des termes sources est particulièrement adaptée pour la résolution d'un problème multi-échelle spatial et temporel. Dans la mesure où les conditions de réalisabilité sur les moments en taille des méthodes MF ne sont pas garanties avec des méthodes d'intégration traditionnelles, nous avons développé des schémas innovants pour l'intégration des termes sources. Les travaux proposés dans cette contribution répond à deux exigences : 1- un ratio coût/précision attractif pour des simulations industrielles 2- une facilité d'implémentation des méthodes et une modularité assurant la pérennisation des codes industriels. Ces développements ont d'abord été vérifiés à l'aide d'un code ad hoc ; des cas test d'étude d'acoustique diphasique linéaire ont notamment souligné la pertinence de la technique de splitting pour restituer avec précision les interactions spray-acoustique. Les nouvelles méthodes ont ensuite été implémentées et validées au sein du code multi-physique CEDRE développé à l'ONERA. Des calculs de propulsion solide sur des configurations moteur réalistes ont finalement mis en évidence le niveau de maturité atteint par les méthodes eulériennes pour décrire avec fidélité la dynamique des sprays polydisperses. Les résultats de ces simulations ont mis en avant la sensibilité des niveaux d'instabilités en fonction de la distribution en taille des gouttes d'aluminium et des résidus. / The addition of a significant mass fraction of aluminum particle in the propellant of Solid Rocket Motors improves performance through an increase of the temperature in the combustion chamber. The distributed combustion of aluminum droplets in a portion of the chamber yields a massive amount of disperse aluminum oxide residues with a large size spectrum, called a polydisperse spray, in the entire volume. The spray can have a significant impact on the motor behavior and in particular on the onset/damping of instability. When dealing with aeroacoustical and thermoacoustical instabilities, the faithful prediction of the interactions between the gaseous phase and the spray is a determining step for understanding the physical mechanisms and for future solid rocket motor optimization. In such a harsh environment, experimental measurements have a hard time providing detailed explanation of the physical mechanisms and one has to resort to numerical simulation. For such a purpose, the distributed combustion zone and thermal profile therein, the heat generated by the combustion of the dispersed droplets and the large size distribution of the aluminum oxide residues and its coupling with he gaseous phase hydrodynamic and acoustic fields have to be accurately reproduced through a proper level of modeling and a high fidelity simulation including a precise resolution of size polydispersity, which is a key parameter.In this contribution, we choose a kinetic approach for the description of polydisperse sprays. The Williams-Boltzmann Equation is used to model the disperse phase and we derive a fully Eulerian approach through moment methods. The Multi-Fluid (MF) methods naturally treat droplet size evolution through phenomena such as evaporation and coalescence. These methods rely on the conservation of size moments on fixed intervals called sections and yield systems of conservation laws for a set of "fluids" of droplet of various sizes, which is strongly coupled with the gas phase via source terms. We derive a new optimal and flexible Two Size Moment MF method based on a family of polynomial reconstruction functions to describe the size distribution in the sections, which is second order accurate and particularly efficient at describing accurately the evolution of the size distribution with a moderate number of sections. An original work is also conducted in order to extend this approach to two-component droplets. For size moment MF methods, realizability of the moments is a crucial issue. Thus, we have developed innovative schemes for integrating source terms in moment conservation equations describing transport in phase space. This method enables the use of more representative aluminum droplet combustion models, and leads to more advanced studies of the distributed combustion zone. Moreover, for unsteady two-phase flow simulations, we have developed a robust and accurate coupling strategy between phases that are modeled by a fully Eulerian approach based on operator splitting in order to treat such spatial and temporal very multi-scale problems with reasonable computational time. All the proposed developments have been carried out following two criteria : 1- an attractive cost/accuracy ratio for industrial simulations in the context of high fidelity simulations 2- a preservation of industrial code legacy. Verification of the models and methods have been conducted first using an in-house reseach code and then in the context of a two-phase acoustic study thus emphasizing the relevance of the splitting technique to capture accurately spray-acoustic interactions.
|
10 |
Modeling evaporation in the rarefied gas regime by using macroscopic transport equationsBeckmann, Alexander Felix 19 April 2018 (has links)
Due to failure of the continuum hypothesis for higher Knudsen numbers, rarefied gases and microflows of gases are particularly difficult to model. Macroscopic transport equations compete with particle methods, such as the direct simulation Monte Carlo method (DSMC) to find accurate solutions in the rarefied gas regime. Due to growing interest in micro flow applications, such as micro fuel cells, it is important to model and understand evaporation in this flow regime. To gain a better understanding of evaporation physics, a non-steady simulation for slow evaporation in a microscopic system, based on the Navier-Stokes-Fourier equations, is conducted. The one-dimensional problem consists of a liquid and vapor layer (both pure water) with respective heights of 0.1mm and a corresponding Knudsen number of Kn=0.01, where vapor is pumped out. The simulation allows for calculation of the evaporation rate within both the transient process and in steady state. The main contribution of this work is the derivation of new evaporation boundary conditions for the R13 equations, which are macroscopic transport equations with proven applicability in the transition regime. The approach for deriving the boundary conditions is based on an entropy balance, which is integrated around the liquid-vapor interface. The new equations utilize Onsager relations, linear relations between thermodynamic fluxes and forces, with constant coefficients that need to be determined. For this, the
boundary conditions are fitted to DSMC data and compared to other R13 boundary conditions from kinetic theory and Navier-Stokes-Fourier solutions for two steady-state, one-dimensional problems. Overall, the suggested fittings of the new phenomenological boundary conditions show better agreement to DSMC than the alternative kinetic theory evaporation boundary conditions for R13. Furthermore, the new evaporation boundary conditions for R13 are implemented in a code for the numerical solution of complex, two-dimensional geometries and compared to Navier-Stokes-Fourier (NSF) solutions. Different flow patterns between R13 and NSF for higher Knudsen numbers are observed which suggest continuation of this work. / Graduate
|
Page generated in 0.083 seconds