• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 9
  • 1
  • 1
  • Tagged with
  • 72
  • 25
  • 16
  • 15
  • 14
  • 13
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A precise, General, Non-Invasive and Automatic Speed Estimation Method for MCSA Steady-State Diagnosis and Efficiency Estimation of Induction Motors in the 4.0 Industry

Bonet Jara, Jorge 16 June 2023 (has links)
Tesis por compendio / [ES] Hay dos aspectos cruciales a la hora de operar motores de inducción en la industria: la estimación de su eficiencia (para minimizar el consumo de energía) y su diagnóstico (para evitar paradas intempestivas y reducir los costes de mantenimiento). Para estimar la eficiencia del motor es necesario medir tensiones y corrientes. Por ello, resulta conveniente y muy útil utilizar la misma corriente para diagnosticar también el motor (Motor Current Signature Analysis: MCSA). En este sentido, la técnica MCSA más adecuada es aquella basada en la localización de armónicos de fallo en el espectro de la corriente de línea del estator en régimen permanente, pues esta es la condición de funcionamiento de la mayoría de los motores de inducción de la industria. Por otro lado, dado que la frecuencia de estos armónicos depende de la velocidad, resulta imprescindible conocer esta magnitud con precisión, ya que esto permite localizar correctamente los armónicos de fallo, y, por tanto, reducir las posibilidades de falsos positivos/negativos. A su vez, una medida precisa de la velocidad también permite calcular con precisión la potencia mecánica, lo que se traduce en una estimación más exacta del rendimiento. Por último, para adaptarse a las necesidades de la Industria 4.0, en la que se monitoriza continuamente un gran número de motores, la velocidad también debe ser obtenida de manera no invasiva, automática y para cualquier motor de inducción. A este respecto, dado que la medición precisa de la velocidad a través de un encóder es invasiva y costosa, las técnicas de estimación de velocidad sin sensores (SSE en inglés) se convierten en la mejor opción. En la primera parte de esta tesis se realiza un análisis exhaustivo de las familias de técnicas SSE presentes en la literatura técnica. Como se demuestra en ella, aquellos métodos basados en armónicos de ranura (RSHs en inglés) y en armónicos laterales de frecuencia rotacional (RFSHs) son potencialmente los únicos que pueden satisfacer todos los requisitos mencionados anteriormente. Sin embargo, como también se demuestra en esta parte, y hasta esta tesis, siempre había existido un compromiso entre la precisión (característica de los RSHs) y la aplicabilidad general del método (característica de los RFSHs). En la segunda parte, y núcleo de esta tesis, se presenta una metodología que acaba con este compromiso, proporcionando así el primer método de estimación de velocidad preciso, general, no invasivo y automático para el diagnóstico en estado estacionario MCSA y la estimación de la eficiencia de motores de inducción que operan en un contexto de Industria 4.0. Esto se consigue desarrollando una novedosa técnica basada en RSHs que, por primera vez en la literatura técnica, elimina la necesidad de conocer/estimar el número de ranuras del rotor, lo que había impedido hasta la fecha que estos métodos fueran de aplicación general. Esta técnica proporciona además un procedimiento fiable y automático para localizar la familia de RSHs en el espectro de la corriente de línea de un motor de inducción. De igual forma y sin la ayuda de un experto, la técnica es capaz de determinar los parámetros necesarios para estimar la velocidad a partir de los RSHs, utilizando medidas tomadas en régimen estacionario. La metodología es validada utilizando motores con diferentes características y tipos de alimentaciones, empleando para ello simulaciones, pruebas de laboratorio y 105 motores industriales. Además, se muestra un caso de aplicación industrial en el que el algoritmo desarrollado se implementa en un sistema de monitorización continua mediante MCSA, lo que acaba conduciendo al descubrimiento de un nuevo fallo en motores sumergibles de pozo profundo: el desgaste de los anillos de cortocircuito. Por último, se presenta una segunda aplicación directa para este tipo de motores derivada del procedimiento de detección de RSHs: el uso de estos armónicos para diagnosticar, en fase temprana, cortocircuitos entre espiras. / [CA] Hi ha dos aspectes crucials a l'hora d'operar motors d'inducció en la indústria: l'estimació de la seua eficiència (per a minimitzar el consum d'energia) i el seu diagnòstic (per a evitar parades intempestives i reduir els costos de manteniment). Per a estimar l'eficiència del motor és necessari mesurar tensions i corrents. Per això, resulta convenient i molt útil utilitzar el mateix corrent per a diagnosticar també el motor (Motor Current Signature Analysis: MCSA). En aquest sentit, la tècnica MCSA més adequada és aquella basada en la localització d'harmònics de fallada en l'espectre del corrent de línia de l'estator en règim permanent, ja que aquesta és la condició de funcionament de la majoria dels motors d'inducció de la indústria. D'altra banda, atés que la freqüència d'aquests harmònics depén de la velocitat, resulta imprescindible conéixer aquesta magnitud amb precisió, ja que això permet localitzar correctament els harmònics de fallada i, per tant, reduir les possibilitats de falsos positius/negatius. Al seu torn, una mesura precisa de la velocitat també permet calcular amb precisió la potència mecànica, la qual cosa es tradueix en una estimació més exacta del rendiment. Finalment, per a adaptar-se a les necessitats de la Indústria 4.0, en la qual es monitora contínuament un gran nombre de motors, la velocitat també ha de ser obtinguda de manera no invasiva, automàtica i per a qualsevol motor d'inducció. En aquest sentit, atès que el mesurament precís de la velocitat a través d'un encóder és invasiva i costosa, les tècniques d'estimació de velocitat sense sensors (SSE en anglés) es converteixen en la millor opció. En la primera part d'aquesta tesi es realitza una anàlisi exhaustiva de totes les famílies de tècniques SSE presents en la literatura tècnica. Com es demostra en ella, aquells mètodes basats en harmònics de ranura (RSHs en anglès) i harmònics laterals de freqüència rotacional (RFSHs en anglés) són els més prometedors, ja que son potencialment els únics que poden satisfer tots els requisits esmentats anteriorment. No obstant això, com també es demostra en aquesta part, i fins a aquesta tesi, sempre havia existit un compromís entre la precisió (característica dels RSHs) i l'aplicabilitat general del mètode (característica dels RFSHs). En la segona part, i nucli d'aquesta tesi, es presenta una metodologia que acaba amb aquest compromís, proporcionant així el primer mètode d'estimació de velocitat precís, general, no invasiu i automàtic per al diagnòstic en estat estacionari MCSA i l'estimació de l'eficiència de motors d'inducció que operen en un context d'Indústria 4.0. Això s'aconsegueix desenvolupant una nova tècnica basada en RSHs que, per primera vegada en la literatura tècnica, elimina la necessitat de conéixer/estimar el nombre de ranures del rotor, cosa que havia impedit fins avui que aquests mètodes foren d'aplicació general. Aquesta tècnica proporciona a més un procediment fiable i automàtic per a localitzar la família de RSHs en l'espectre del corrent de línia d'un motor d'inducció. De la mateixa forma i sense l'ajuda d'un expert, la tècnica és capaç de determinar els paràmetres necessaris per a estimar la velocitat a partir dels RSHs, utilitzant mesures preses en règim estacionari. La metodologia és validada utilitzant motors amb diferents característiques i condicions d'alimentació, emprant per a això simulacions, proves de laboratori i 105 motors industrials. A més, es mostra un cas real d'aplicació industrial en el qual l'algoritme desenvolupat és implementat en un sistema de monitoratge continu mitjançant MCSA, la qual cosa acaba conduint al descobriment d'una nova fallada en motors submergibles de pou profund: el desgast dels anells de curtcircuit. Finalment, es presenta una segona aplicació directa per a aquest tipus de motors derivada del procediment de detecció de RSHs: l'ús d'aquests harmònics per a diagnosticar, en fase primerenca, curtcircuits entre espires. / [EN] There are two crucial aspects when operating induction motors in industry: efficiency estimation (to minimize energy consumption) and diagnosis (to avoid untimely outages and reduce maintenance costs). To estimate the motor's efficiency, it is necessary to measure voltages and currents. Hence, it is convenient and very useful using the same current to also diagnose the motor (Motor Current Signature Analysis: MCSA). In this regard, the most suitable MCSA technique is that based on locating fault harmonics in the spectrum of the stator line current under steady-state, as this is the operating condition of most induction motors in industry. Since the frequency of these harmonics depends on the speed, it becomes essential to be able to know this magnitude with precision, as this makes it possible to correctly locate the fault harmonics, and therefore, reduce the chances of false positives/negatives. In turn, an accurate speed information also allows to calculate the mechanical power with precision, which results in a more accurate estimation of the motor performance. Finally, to adapt to the needs of 4.0 Industry, where large numbers of motors are continuously monitored, the speed must not only be obtained very accurately, but also non-invasively, automatically (without the need for an expert) and for any induction motor. In this regard, since precise speed measurement through a shaft sensor is invasive and expensive, Sensorless Speed Estimation (SSE) techniques become the best option. The first part of this thesis conducts a thorough analysis of all the families of SSE techniques present in the technical literature. As demonstrated therein, those techniques based on Slotting and Rotational Frequency Sideband Harmonics are the most promising, as they can potentially meet all the aforementioned requirements. However, as also proved in this part, and up to this thesis, there had always been a trade-off between accuracy, characteristic of Rotor Slot Harmonics (RSHs), and general applicability, characteristic of Rotational Frequency Sideband Harmonics (RFSHs). The second part, and core of this thesis, presents a methodology that ends with this trade-off between accuracy and general applicability, thus providing the first precise, general, noninvasive and automatic speed estimation method for MCSA steady-state diagnosis and efficiency estimation of induction motors that operate in a 4.0 Industry context. This is achieved by developing a novel RSH-based technique that, for the first time in technical literature, eliminates the need to know/estimate the number of rotor slots, which had so far prevented these techniques to be generally applicable. This technique also provides a reliable and automatic procedure to, from among the high number of significant harmonics present in the spectrum of the line current of an induction motor, locate the RSHs family. Also automatically and without the help of an expert, the technique is able to determine the parameters needed to estimate speed from RSHs, using only measurements taken during the motor normal operation at steady-state. The methodology is validated using motors with different characteristics and supply conditions, by simulations, lab tests and with 105 industrial motors. Furthermore, a real industrial case of application is shown as well, where the speed estimation algorithm is implemented in a continuous motor condition monitoring system via MCSA, which eventually leads to the discovery of a new fault in deep-well submersible motors: the wear of end-rings. Finally, a second direct application derived from the reliable and automatic procedure to detect RSHs is presented: the use of these harmonics to diagnose early-stage inter-turn faults in induction motors of deep-well submersible pumps. / Bonet Jara, J. (2023). A precise, General, Non-Invasive and Automatic Speed Estimation Method for MCSA Steady-State Diagnosis and Efficiency Estimation of Induction Motors in the 4.0 Industry [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194269 / Compendio
72

Probabilistic methods for multi-source and temporal biomedical data quality assessment

Sáez Silvestre, Carlos 05 April 2016 (has links)
[EN] Nowadays, biomedical research and decision making depend to a great extent on the data stored in information systems. As a consequence, a lack of data quality (DQ) may lead to suboptimal decisions, or hinder the derived research processes and outcomes. This thesis aims to the research and development of methods for assessing two DQ problems of special importance in Big Data and large-scale repositories, based on multi-institutional, cross-border infrastructures, and acquired during long periods of time: the variability of data probability distributions (PDFs) among different data sources-multi-source variability-and the variability of data PDFs over time-temporal variability. Variability in PDFs may be caused by differences in data acquisition methods, protocols or health care policies; systematic or random errors during data input and management; demographic differences in populations; or even falsified data. To date, these issues have received little attention as DQ problems nor count with adequate assessment methods. The developed methods aim to measure, detect and characterize variability dealing with multi-type, multivariate, multi-modal data, and not affected by large sample sizes. To this end, we defined an Information Theory and Geometry probabilistic framework based on the inference of non-parametric statistical manifolds from the normalized distances of PDFs among data sources and over time. Based on this, a number of contributions have been generated. For the multi-source variability assessment we have designed two metrics: the Global Probabilistic Deviation, which measures the degree of global variability among the PDFs of multiple sources-equivalent to the standard deviation among PDFs; and the Source Probabilistic Outlyingness, which measures the dissimilarity of the PDF of a single data source to a global latent average. They are based on the construction of a simplex geometrical figure (the maximum-dimensional statistical manifold) using the distances among sources, and complemented by the Multi-Source Variability plot, an exploratory visualization of that simplex which permits detecting grouping patterns among sources. The temporal variability method provides two main tools: the Information Geometric Temporal plot, an exploratory visualization of the temporal evolution of PDFs based on the projection of the statistical manifold from temporal batches; and the PDF Statistical Process Control, a monitoring and automatic change detection algorithm for PDFs. The methods have been applied to repositories in real case studies, including the Public Health Mortality and Cancer Registries of the Region of Valencia, Spain; the UCI Heart Disease; the United States NHDS; and Spanish Breast Cancer and an In-Vitro Fertilization datasets. The methods permitted discovering several findings such as partitions of the repositories in probabilistically separated temporal subgroups, punctual temporal anomalies due to anomalous data, and outlying and clustered data sources due to differences in populations or in practices. A software toolbox including the methods and the automated generation of DQ reports was developed. Finally, we defined the theoretical basis of a biomedical DQ evaluation framework, which have been used in the construction of quality assured infant feeding repositories, in the contextualization of data for their reuse in Clinical Decision Support Systems using an HL7-CDA wrapper; and in an on-line service for the DQ evaluation and rating of biomedical data repositories. The results of this thesis have been published in eight scientific contributions, including top-ranked journals and conferences. One of the journal publications was selected by the IMIA as one of the best of Health Information Systems in 2013. Additionally, the results have contributed to several research projects, and have leaded the way to the industrialization of the developed methods and approaches for the audit and control of biomedical DQ. / [ES] Actualmente, la investigación biomédica y toma de decisiones dependen en gran medida de los datos almacenados en los sistemas de información. En consecuencia, una falta de calidad de datos (CD) puede dar lugar a decisiones sub-óptimas o dificultar los procesos y resultados de las investigaciones derivadas. Esta tesis tiene como propósito la investigación y desarrollo de métodos para evaluar dos problemas especialmente importantes en repositorios de datos masivos (Big Data), basados en infraestructuras multi-céntricas, adquiridos durante largos periodos de tiempo: la variabilidad de las distribuciones de probabilidad (DPs) de los datos entre diferentes fuentes o sitios-variabilidad multi-fuente-y la variabilidad de las distribuciones de probabilidad de los datos a lo largo del tiempo-variabilidad temporal. La variabilidad en DPs puede estar causada por diferencias en los métodos de adquisición, protocolos o políticas de atención; errores sistemáticos o aleatorios en la entrada o gestión de datos; diferencias demográficas en poblaciones; o incluso por datos falsificados. Esta tesis aporta métodos para detectar, medir y caracterizar dicha variabilidad, tratando con datos multi-tipo, multivariantes y multi-modales, y sin ser afectados por tamaños muestrales grandes. Para ello, hemos definido un marco de Teoría y Geometría de la Información basado en la inferencia de variedades de Riemann no-paramétricas a partir de distancias normalizadas entre las PDs de varias fuentes de datos o a lo largo del tiempo. En consecuencia, se han aportado las siguientes contribuciones: Para evaluar la variabilidad multi-fuente se han definido dos métricas: la Global Probabilistic Deviation, la cual mide la variabilidad global entre las PDs de varias fuentes-equivalente a la desviación estándar entre PDs; y la Source Probabilistic Outlyingness, la cual mide la disimilaridad entre la DP de una fuente y un promedio global latente. Éstas se basan en un simplex construido mediante las distancias entre las PDs de las fuentes. En base a éste, se ha definido el Multi-Source Variability plot, visualización que permite detectar patrones de agrupamiento entre fuentes. El método de variabilidad temporal proporciona dos herramientas: el Information Geometric Temporal plot, visualización exploratoria de la evolución temporal de las PDs basada en la la variedad estadística de los lotes temporales; y el Control de Procesos Estadístico de PDs, algoritmo para la monitorización y detección automática de cambios en PDs. Los métodos han sido aplicados a casos de estudio reales, incluyendo: los Registros de Salud Pública de Mortalidad y Cáncer de la Comunidad Valenciana; los repositorios de enfermedades del corazón de UCI y NHDS de los Estados Unidos; y repositorios españoles de Cáncer de Mama y Fecundación In-Vitro. Los métodos detectaron hallazgos como particiones de repositorios en subgrupos probabilísticos temporales, anomalías temporales puntuales, y fuentes de datos agrupadas por diferencias en poblaciones y en prácticas. Se han desarrollado herramientas software incluyendo los métodos y la generación automática de informes. Finalmente, se ha definido la base teórica de un marco de CD biomédicos, el cual ha sido utilizado en la construcción de repositorios de calidad para la alimentación del lactante, en la contextualización de datos para el reuso en Sistemas de Ayuda a la Decisión Médica usando un wrapper HL7-CDA, y en un servicio on-line para la evaluación y clasificación de la CD de repositorios biomédicos. Los resultados de esta tesis han sido publicados en ocho contribuciones científicas (revistas indexadas y artículos en congresos), una de ellas seleccionada por la IMIA como una de las mejores publicaciones en Sistemas de Información de Salud en 2013. Los resultados han contribuido en varios proyectos de investigación, y facilitado los primeros pasos hacia la industrialización de las tecnologías / [CA] Actualment, la investigació biomèdica i presa de decisions depenen en gran mesura de les dades emmagatzemades en els sistemes d'informació. En conseqüència, una manca en la qualitat de les dades (QD) pot donar lloc a decisions sub-òptimes o dificultar els processos i resultats de les investigacions derivades. Aquesta tesi té com a propòsit la investigació i desenvolupament de mètodes per avaluar dos problemes especialment importants en repositoris de dades massius (Big Data) basats en infraestructures multi-institucionals o transfrontereres, adquirits durant llargs períodes de temps: la variabilitat de les distribucions de probabilitat (DPs) de les dades entre diferents fonts o llocs-variabilitat multi-font-i la variabilitat de les distribucions de probabilitat de les dades al llarg del temps-variabilitat temporal. La variabilitat en DPs pot estar causada per diferències en els mètodes d'adquisició, protocols o polítiques d'atenció; errors sistemàtics o aleatoris durant l'entrada o gestió de dades; diferències demogràfiques en les poblacions; o fins i tot per dades falsificades. Aquesta tesi aporta mètodes per detectar, mesurar i caracteritzar aquesta variabilitat, tractant amb dades multi-tipus, multivariants i multi-modals, i no sent afectats per mides mostrals grans. Per a això, hem definit un marc de Teoria i Geometria de la Informació basat en la inferència de varietats de Riemann no-paramètriques a partir de distàncies normalitzades entre les DPs de diverses fonts de dades o al llarg del temps. En conseqüència s'han aportat les següents contribucions: Per avaluar la variabilitat multi-font s'han definit dos mètriques: la Global Probabilistic Deviation, la qual mesura la variabilitat global entre les DPs de les diferents fonts-equivalent a la desviació estàndard entre DPs; i la Source Probabilistic Outlyingness, la qual mesura la dissimilaritat entre la DP d'una font de dades donada i una mitjana global latent. Aquestes estan basades en la construcció d'un simplex mitjançant les distàncies en les DPs entre fonts. Basat en aquest, s'ha definit el Multi-Source Variability plot, una visualització que permet detectar patrons d'agrupament entre fonts. El mètode de variabilitat temporal proporciona dues eines: l'Information Geometric Temporal plot, visualització exploratòria de l'evolució temporal de les distribucions de dades basada en la varietat estadística dels lots temporals; i el Statistical Process Control de DPs, algoritme per al monitoratge i detecció automàtica de canvis en les DPs de dades. Els mètodes han estat aplicats en repositoris de casos d'estudi reals, incloent: els Registres de Salut Pública de Mortalitat i Càncer de la Comunitat Valenciana; els repositoris de malalties del cor de UCI i NHDS dels Estats Units; i repositoris espanyols de Càncer de Mama i Fecundació In-Vitro. Els mètodes han detectat troballes com particions dels repositoris en subgrups probabilístics temporals, anomalies temporals puntuals, i fonts de dades anòmales i agrupades a causa de diferències en poblacions i en les pràctiques. S'han desenvolupat eines programari incloent els mètodes i la generació automàtica d'informes. Finalment, s'ha definit la base teòrica d'un marc de QD biomèdiques, el qual ha estat utilitzat en la construcció de repositoris de qualitat per l'alimentació del lactant, la contextualització de dades per a la reutilització en Sistemes d'Ajuda a la Decisió Mèdica usant un wrapper HL7-CDA, i en un servei on-line per a l'avaluació i classificació de la QD de repositoris biomèdics. Els resultats d'aquesta tesi han estat publicats en vuit contribucions científiques (revistes indexades i en articles en congressos), una de elles seleccionada per la IMIA com una de les millors publicacions en Sistemes d'Informació de Salut en 2013. Els resultats han contribuït en diversos projectes d'investigació, i han facilitat la industrialització de les tecnologies d / Sáez Silvestre, C. (2016). Probabilistic methods for multi-source and temporal biomedical data quality assessment [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62188 / Premiado

Page generated in 0.0679 seconds