21 |
Mesure fiable et rapide de la déhydroépiandrostérone (DHEA) et de la DHEA-S sériques, biomarqueurs de stress potentiels chez le narval (Monodon monoceros), à l’aide de techniques immuno-enzymatiquesBéland, Karine 01 1900 (has links)
Le narval (Monodon monoceros) est une espèce emblématique de l'Arctique. Les narvals sont de plus en plus exposés à des perturbations anthropiques, pouvant augmenter leur niveau de stress et, par conséquent, avoir des impacts inconnus sur la dynamique de la population. La validation et l’étude de biomarqueurs de stress chronique pourraient donc améliorer les efforts de conservation chez cette espèce. La déhydroépiandrostérone (DHEA) et son métabolite sulfaté, la DHEA-S, sont collectivement appelés DHEA(S). Lorsque combinés sous forme de ratios avec le cortisol (cortisol/DHEA(S)), ils se sont révélés prometteurs dans l'évaluation du stress chronique chez les humains et certaines espèces animales domestiques ou sauvages. Au cours de projets de pose d’émetteurs en 2017 et 2018 dans la baie de Baffin, Nunavut, Canada, des narvals (n = 14) ont été échantillonnés au début et à la fin des manipulations. La DHEA(S) sérique a ensuite été mesurée à l’aide de deux techniques immuno-enzymatiques (ELISAs) développées pour les humains et disponibles commercialement. Une validation partielle des deux ELISAs a pu être réalisée par détermination du coefficient de variation intra-essai, confirmation de la linéarité de dilution de la DHEA(S) et calcul du pourcentage de récupération. La DHEA était également bien conservée dans le sérum de narvals suite à un stockage prolongé de 12 et 24 mois à -80°C, soulignant le potentiel d'analyse d'échantillons archivés. Les valeurs sériques moyennes (ng/ml ± SEM) de cortisol, de DHEA(S) et des ratios cortisol/DHEA(S) au début et à la fin des manipulations respectivement étaient les suivantes : cortisol = 30,74 ± 4,87 et 41,83 ± 4,83; DHEA = 1,01 ± 0,52 et 0,99 ± 0,50; DHEA-S = 8,72 ± 1,68 et 7,70 ± 1,02; cortisol/DHEA = 75,43 ± 24,35 et 84,41 ± 11,76; cortisol/DHEA-S = 4,16 ± 1,07 et 6,14 ± 1,00). Le cortisol sérique et le ratio cortisol/DHEA-S étaient statistiquement plus élevés à la fin des manipulations (P = 0,024 et P = 0,035 respectivement). De plus, le cortisol sérique à la fin des manipulations était positivement corrélé à la longueur totale du corps de l’animal (P = 0,042) et avait tendance à être plus élevé chez les mâles (P = 0,086). Cette étude confirme que ces ELISAs sont une méthode d’analyse facile à réaliser, rapide et appropriée pour mesurer la DHEA(S) sérique chez le narval. La DHEA(S) sérique et les ratios cortisol/DHEA(S) représentent des biomarqueurs potentiels pour évaluer le stress chronique chez les narvals et possiblement chez d'autres espèces de cétacés. / Narwhals (Monodon monoceros) are an iconic Arctic species and are increasingly being exposed to anthropogenic disturbances that may increase their stress levels with unknown consequences for the overall population dynamics. The validation and measurement of chronic stress biomarkers could contribute towards an improved understanding and conservation efforts for this species. Dehydroepiandrosterone (DHEA), and its sulfated metabolite DHEA-S, are collectively referred to as DHEA(S). When serum DHEA(S) concentrations are combined in a ratio with cortisol (cortisol/DHEA(S)), it has shown promise for evaluating chronic stress in humans, domestic animals, and wildlife. During field tagging in 2017 and 2018 on Baffin Bay, Nunavut, Canada, wild narwhals (n = 14) were sampled at the beginning and end of capture-tagging procedures (acute stressor). Serum DHEA(S) were measured with commercially available competitive enzyme-linked immunosorbent assays (ELISA) developed for humans. A partial validation of the assays was performed by determination of the intra-assay coefficient of variation, confirmation of the DHEA(S) dilutional linearity, and the calculation of the percentage of recovery. In addition, DHEA was conserved following extended storage at -80°C, highlighting the potential to analyze archival samples. Mean values (ng/mL ± SEM) of narwhal serum cortisol, DHEA(S), and cortisol/DHEA(S) ratios at the beginning and at the end of handling respectively are reported (cortisol = 30.74 ± 4.87, 41.83 ± 4.83; DHEA = 1.01 ± 0.52, 0.99 ± 0.50; DHEA-S = 8.72 ± 1.68, 7.70 ± 1.02; cortisol/DHEA = 75.43 ± 24.35, 84.41 ± 11.76, and cortisol/DHEA-S = 4.16 ± 1.07, 6.14 ± 1.00). Serum cortisol and cortisol/DHEA-S were statistically higher at the end of the capture (P = 0.024 and P = 0.035 respectively). Moreover, serum cortisol at the end of handling and prior to release was positively correlated to total body length (P = 0.042) and tended to be higher in males (P = 0.086). This study showed that these assays are easy to perform, rapid, and suitable for measuring serum DHEA(S) of narwhals and that serum DHEA(S) and calculated cortisol/DHEA(S) are potential biomarkers for chronic stress in narwhals and possibly other species of cetaceans, but this requires additional study.
|
22 |
Trophic dynamics in the northern Humboldt Current system : insights from stable isotopes and stomach content analyses / Dynamique trophique du système du Courant de Humboldt : apports des isotopes stables et des analyses de contenus stomacauxEspinoza, Pepe 14 May 2014 (has links)
Le nord du système du Courant de Humboldt (NHCS), le long des côtes péruviennes, est l'une des régions océanique les plus productives au monde. Il représente moins de 0.1% de la surface des océans mondiaux mais contribue actuellement à plus de 10% des captures mondiales en poissons, avec l’anchois Engraulis ringens comme espèce emblématique. Comparé aux autres systèmes d’upwelling de bord Est, la forte productivité en poissons ne peut être expliquée par une productivité primaire plus élevée. Par contre, le NCHS est la région où El Niño, et la variabilité climatique en général est la plus notable. D’autre part, les eaux de surface oxygénées recouvrent une zone de minimum d’oxygène extrêmement intense et superficielle. L’objectif principal de ce travail est de mieux comprendre les relations trophiques au sein du NHCS en combinant l'analyse de contenus stomacaux et d'isotopes stables. Cette étude se focalise sur une variété d’organismes allant des bas niveaux trophiques comme le zooplancton aux prédateurs supérieurs (oiseaux et les otaries à fourrure). Elle combine des études de contenus stomacaux ponctuelles et sur le long terme d’espèces clés telles que l’anchois et la sardine Sardinops sagax et une analyse plus globale, basée sur l'utilisation d'isotopes stables et considérant l’ensemble du réseau trophique dans les années récentes (2008 – 2012). Les analyses des contenus stomacaux d'anchois et de sardine ont permis de revisiter l'écologie de ces espèces. En effet, bien que le phytoplancton domine largement les contenus stomacaux en termes d’abondance numérique, le zooplancton est de loin la composante alimentaire la plus importante pour ces deux espèces en termes de carbone. Dans le cas de l’anchois, les euphausiacés contribuent à plus de 67.5% du carbone ingéré, suivis par les copépodes (26.3%). Sélectionner les proies les plus grandes telles que les euphausiacés procure un avantage énergétique pour l’anchois dans cet écosystème où les carences en oxygène imposent de fortes contraintes métaboliques aux poissons pélagiques. La sardine se nourrit de zooplancton plus petit que l’anchois (copépodes plus petits et moins d’euphausiacés). Ainsi, la compétition trophique entre les sardines et les anchois est minimisée dans le NSCH par le partage de la ressource zooplancton selon sa taille, comme cela a déjà été montré dans d’autres écosystèmes. Ces résultats remettent en question la compréhension première de la position des petits poissons pélagiques (zooplanctonophage et non phytoplanctonophage) dans la chaine trophique ce qui implique de reconsidérer le fonctionnement et les modèles trophiques du NCHS. Afin d’obtenir une compréhension plus globale de la position trophique relative des principaux composants du NHCS une approche basée sur des analyses d’isotopes stables (δ13C et δ15N) a été utilisée. Pour ce faire, la signature isotopique d'échantillons de 13 groupes taxonomiques (zooplancton, poissons, calmars et prédateurs supérieurs) prélevés entre 2008 et 2011 a été déterminée. Les valeurs de δ15N obtenues sont fortement impactées par l’espèce, la taille et la latitude. Le long de la cote péruvienne, la zone de minimum d’oxygène devient en effet plus intense et plus superficielle au sud de ~7.5ºS impactant fortement la valeur de δ15N de la ligne de base. Nous avons donc utilisé un modèle linéaire à effet mixte prenant en compte les effets latitude et taille afin de prédire la position trophique relative des composants clés de l’écosystème. Ces analyses isotopiques confirment les résultats issus des contenus stomacaux sur le régime alimentaire de l’anchois et mettent en évidence l’importance potentielle d’une composante souvent négligée de l’écosystème, la galathée pélagique Pleuroncodes monodon. En effet, nos résultats supportent l’hypothèse selon laquelle cette espèce s’alimenterait en partie sur les oeufs et larves d’anchois, menaçant ainsi les premiers stades de vie des espèces exploitées. [...] / The northern Humboldt Current system (NHCS) off Peru is one of the most productive world marine regions. It represents less than 0.1% of the world ocean surface but presently sustains about 10% of the world fish catch, with the Peruvian anchovy or anchoveta Engraulis ringens as emblematic fish resource. Compared with other eastern boundary upwelling systems, the higher fish productivity of the NHCS cannot be explained by a corresponding higher primary productivity. On another hand, the NHCS is the region where El Niño, and climate variability in general, is most notable. Also, surface oxygenated waters overlie an intense and extremely shallow Oxygen Minimum Zone (OMZ). In this context, the main objective of this study is to better understand the trophic flows in the NHCS using both stomach content and stable isotope analyses. The study focuses on a variety of organisms from low trophic levels such as zooplankton to top predators (seabirds and fur seals). The approach combines both long-term and specific studies on emblematic species such as anchoveta, and sardine Sardinops sagax and a more inclusive analysis considering the 'global' food web in the recent years (2008 –2012) using stable isotope analysis.Revisiting anchovy and sardine we show that whereas phytoplankton largely dominated anchoveta and sardine diets in terms of numerical abundance, the carbon content of prey items indicated that zooplankton was by far the most important dietary component. Indeed for anchovy euphausiids contributed 67.5% of dietary carbon, followed by copepods (26.3%).Selecting the largest prey, the euphausiids, provide an energetic advantage for anchoveta in its ecosystem where oxygen depletion imposes strong metabolic constrain to pelagic fish. Sardine feed on smaller zooplankton than do anchoveta, with sardine diet consisting of smaller copepods and fewer euphausiids than anchoveta diet. Hence, trophic competition between sardine and anchovy in the northern Humboldt Current system is minimized by their partitioning of the zooplankton food resource based on prey size, as has been reported in other systems.These results suggest an ecological role for pelagic fish that challenges previous understanding of their position in the foodweb (zooplanktophagous instead of phytophagous), the functioning and the trophic models of the NHCS.Finally to obtain a more comprehensive vision of the relative trophic position of NHCS main components we used stable isotope analyses. For that purpose we analyzed the δ13C and δ15N stable isotope values of thirteen taxonomic categories collected off Peru from 2008 - 2011, i.e., zooplankton, fish, squids and air-breathing top predators. The δ15N isotope signature was strongly impacted by the species, the body length and the latitude. Along the Peruvian coast, the OMZ get more intense and shallow south of ~7.5ºS impacting the baseline nitrogen stable isotopes. Employing a linear mixed-effects modelling approach taking into account the latitudinal and body length effects, we provide a new vision of the relative trophic position of key ecosystem components. Also we confirm stomach content-based results on anchoveta Engraulis ringens and highlight the potential remarkable importance of an often neglected ecosystem component, the squat lobster Pleuroncodes monodon. Indeed, our results support the hypothesis according to which this species forage to some extent on fish eggs and larvae and can thus predate on the first life stages of exploited species. However, the δ13C values of these two species suggest that anchoveta and squat lobster do not exactly share the same habitat. This would potentially reduce some direct competition and/or predation.
|
23 |
Variação espaço temporal da comunidade zooplanctônica em viveiros de cultivo de camarão branco, Litopenaeus vannamei (Boone, 1931), no município Curuçá, Pará-BrasilNASCIMENTO, Atilla Melo do 04 April 2011 (has links)
Submitted by Cleide Dantas (cleidedantas@ufpa.br) on 2014-11-10T12:08:47Z
No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Dissertacao_VariacaoEspacoTemporal.pdf: 992324 bytes, checksum: 3daa5caed6fa37d3623253f262d663c7 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2014-11-10T13:34:02Z (GMT) No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Dissertacao_VariacaoEspacoTemporal.pdf: 992324 bytes, checksum: 3daa5caed6fa37d3623253f262d663c7 (MD5) / Made available in DSpace on 2014-11-10T13:34:02Z (GMT). No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Dissertacao_VariacaoEspacoTemporal.pdf: 992324 bytes, checksum: 3daa5caed6fa37d3623253f262d663c7 (MD5)
Previous issue date: 2011 / Ao longo das últimas décadas, a carcinicultura vem apresentando um grande crescimento em diversas partes do mundo, com o Brasil seguindo esta tendência mundial (FAO, 2004). Nesta atividade três espécies de camarão têm se destacado como as mais cultivadas, sendo elas Penaeus monodon (Fabricius, 1798), Fenneropenaeus chinensis (Osbeck, 1765) e Litopenaeus vannamei (Boone, 1931), responsáveis por cerca de 80% da produção mundial (FAO, 2004). No Brasil L. vannamei é a espécie mais cultivada, com a produção brasileira correspondendo a 5% da produção mundial (FAO, 2004).
L. vannamei é uma espécie marinha originária do Oceano Pacífico, distribuída do México ao Peru. Por ser eurihalino, este camarão pode se adaptar às mais diversas condições de cultivo, desde águas salgadas até de menores salinidades (BRAY et al., 1993; PONCE-PALAFOX et al., 1997), característica que tem aumentado o interesse dos produtores. Embora seja exótica no Brasil, L. vannamei, mostra maior resistência à variação de temperatura e salinidade do que outros camarões peneídeos nativos (BRITO et al., 2000).
O alimento do camarão e as estratégias de seu fornecimento têm merecido uma atenção especial do setor, gerando novas técnicas ou seu aperfeiçoamento. A ração nos sistemas de cultivo intensivo e semi-intensivo, por exemplo, é responsável por 50-60% dos custos totais de produção, demonstrando a importância de novas estratégias para minimizar sue uso. O aumento da biomassa do plâncton (alimento natural), e conseqüentemente, da cadeia alimentar, reduz os custos com a alimentação suplementar, influenciando diretamente os custos finais de produção (AVAULT, 2003). Segundo Nunes (1995), o incremento da produtividade natural é tão importante quanto o uso de uma ração nutricionalmente completa e bem balanceada.
Logo após a introdução nos viveiros de cultivo, a base da alimentação de L. vannamei é composta, em parte, pelo alimento natural disponível (NUNES et al. 1997; MARTINEZ-CORDOVA et al. 1997; ROTHLISBERG, 1998) complementada com ração comercial. Martinez-Cordova et al. (2002) mostraram que as concentrações de clorofila ‘a’ diminuem cerca de 50% do início ao fim do cultivo, provavelmente devido a pastagem pelo zooplâncton e por alguns invertebrados bentônicos.
Além da importância do zooplâncton como alimento para as pós-larvas de camarão nos viveiros de engorda, o uso destes organismos (principalmente copépodes) como alimento vivo na aqüicultura marinha vem recebendo grande atenção nos últimos anos (DELBARE et al. 1996). Tal fato ocorre por serem ricos em fosfolipídios, ácidos graxos essenciais altamente insaturados e antioxidantes naturais, sendo nutricionalmente superiores aos rotíferos e aos náuplios de artemia, comumente usados na larvicultura marinha (SARGENT et al. 1997, STOTTRUP e NOSKER, 1997) promovendo o sucesso as larviculturas de camarão (PAYNE et al. 1998; SCHIPP et al. 1999; PAYNE e RIPPINGALE, 2000).
Desta forma, estudos sobre o cultivo intensivo de camarões marinhos que enfoquem a composição da comunidade planctônica, as variáveis bióticas e abióticas no sistema, e a característica dos efluentes gerados, são de grande importância. Assim, os resultados obtidos podem incrementar a produtividade aquática no cultivo, alem de fornecer subsídios para pesquisas posteriores de avaliação e mitigação dos impactos ambientais causados por esta atividade.
|
Page generated in 0.0422 seconds