Spelling suggestions: "subject:"morden"" "subject:"mordenite""
11 |
Lattices and Their Applications to Rational Elliptic SurfacesRimmasch, Gretchen 03 March 2004 (has links) (PDF)
This thesis discusses some of the invariants of rational elliptic surfaces, namely the Mordell-Weil Group, Mordell-Weil Lattice, and another lattice which will be called the Shioda Lattice. It will begin with a brief overview of rational elliptic surfaces, followed by a discussion of lattices, root systems and Dynkin diagrams. Known results of several authors will then be applied to determine the groups and lattices associated with a given rational elliptic surface, along with a discussion of the uses of these groups and lattices in classifying surfaces.
|
12 |
Calculs dans les jacobiennes de courbes algébriques, applications en géométrie algébrique réelle.Mahé, Valéry 28 September 2006 (has links) (PDF)
Nous nous intéressons à un aspect quantitatif du dix-septième problème de Hilbert : construire une famille de polynômes en deux variables, à coefficients réels, de degré 8 en l'une des deux variables qui sont positifs mais ne sont pas somme de trois carrés de fractions rationnelles.<br /><br />Comme expliqué par Huisman et Mahé, un polynôme donné P en deux variables à coefficients réels, totalement positif, unitaire, sans facteur carré et de degré multiple de 4 en l'une des variables est une somme de trois carrés de fractions rationnelles si et seulement si la jacobienne d'une certaine courbe hyperelliptique (associée à P) possède un point ”antineutre”.<br /><br />Grâce à ce critère, et en suivant une méthode de Cassels, Ellison et Pfister, nous résolvons notre problème : à l'aide d'une 2-descente, nous montrons que la jacobienne associée à un certain polynôme positif est de rang de Mordell-Weil nul, puis nous vérifions que cette jacobienne n'a aucun point de torsion antineutre.
|
13 |
Functional relations among certain double polylogarithms and their character analoguesTSUMURA, Hirofumi, MATSUMOTO, Kohji January 2008 (has links)
No description available.
|
14 |
Constantes d'Hermite et théorie de VoronoïMeyer, Bertrand 28 November 2008 (has links) (PDF)
Cette thèse étend la théorie de Voronoï aux invariants d'Hermite généralisés définis par T. Watanabe pour le groupe linéaire adèlique : elle caractérise via des propriétés de perfection et d'eutaxie les maxima locaux de cet invariant en terme de formes de Humbert. Par l'extension d'inégalités et de méthodes développées dans le cas classique, elle présente les valeurs de ces constantes dans certains cas particuliers. Enfin, elle introduit pour la variété drapeau des notions de design vexillaire et de réseau fortement parfait qui fournissent via la théorie des groupes une large classe d'exemple de réseaux extrême.
|
Page generated in 0.3583 seconds