• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 21
  • 11
  • 8
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 217
  • 94
  • 75
  • 63
  • 44
  • 42
  • 29
  • 26
  • 25
  • 24
  • 21
  • 21
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Evaluating Mental Workload for AR Head-Mounted Display Use in Construction Assembly Tasks

Qin, Yimin 14 June 2023 (has links)
Augmented Reality (AR) head-mounted display (HMD) provides users with an immersive virtual experience in the real world. The portability of this technology affords various information display options for construction workers that are not possible otherwise. The information delivered via an interactive user interface provides an innovative method to display complex building instructions, which is more intuitive and accessible compared with traditional paper documentations. However, there are still challenges hindering the practical usage of this technology at the construction jobsite. As a technical restriction, current AR HMD products have a limited field of view (FOV) compared to the human vision range. It leads to an uncertainty of how the obstructed view of display will affect construction workers' perception of hazards in their surrounding area. Similarly, the information displayed to workers requires rigorous testing and evaluation to make sure that it does not lead to information overload. Therefore, it is essential to comprehensively evaluate the impacts of using AR HMD from both perspectives of task performance and cognitive performance. This dissertation aims to bridge the gap in understanding the cognitive impacts of using AR HMD in construction assembly tasks. Specifically, it focuses on answering the following two questions: (1) How are task performance and cognitive skills affected by AR displays under complex working conditions? (2) How are moment-to-moment changes of mental workload captured and evaluated during construction assembly tasks? To answer these questions, this dissertation proposed two experiments. The first study tests two AR displays (conformal and tag-along) and paper instruction under complex working conditions, involving different framing scales and interference settings. Subjective responses are collected and analyzed to evaluate overall mental workload and situation awareness. The second study focuses on exploring an electroencephalogram (EEG) based approach for moment-to-moment capture and evaluation of mental workload. It uncovers the cognitive change on the time domain and provides room for further quantitative analyzing on mental workload. Especially, two frameworks of mental workload prediction are proposed by using (1) Long Short-Term Memory (LSTM) and (2) one-dimensional Convolutional Neural Network (1D CNN)-LSTM for forecasting EEG signal and, classifying task conditions and mental workload levels respectively. The approaches are tested to be effective and reliable for predicting and recognizing subjects' mental workload during assembly. In brief, this research contributes to the existing knowledge with an assessment of AR HMD use in construction assembly, including task performance evaluation and both subjective and physiological measurements for cognitive skills. / Doctor of Philosophy / Augmented Reality (AR) is an emerging technology that bridges the gap between virtual creatures and physical world with an immersive display experience. Today, head-mounted display (HMD) is well developed to meet the demands for portable AR devices. It provides interactive and intuitive display of 2D graphical information to make it easier to understand for users. Therefore, AR display has been studied in the past few years for a more simplified and productive construction assembly process. However, given the premise that construction is a high-risk industry, introducing such display technology to the jobsite needs to be carefully tested. One obstacle in current AR HMD products is the restriction of field of view (FOV), which may block users' view in presenting large-scale 3D objects. In construction assembly, workers need to deal with tasks in different scopes, such as wood framing for a residential house. Consequently, it is necessary to study how such technical challenge will impact workers' performance under different task conditions. Another concern comes from the mental perspective. Although AR display may bring convenience in acquiring effective information, it is difficult to measure if this generates excessive mental burden to users. Especially for construction workers, whether the overlaid display will cause distraction and information overload is crucial for protecting workers from hazards. To address the problems, this dissertation explores the gap in previous literature, where mental workload is not well studied for using AR HMD in construction assembly. Two experiments are conducted to comprehensively evaluate the impacts of AR displays on both assembly performance and users' mental status. The outcomes bring implications to theoretical and practical aspects. First, it compares two AR displays (2D tag-along image and 3D conformal model) with traditional paper documentation for assembly performance (efficiency and accuracy) and users' cognitive skills (mental workload and situation awareness). The findings revealed the impact of FOV restriction and provided a strategic solution to selecting display method for different task conditions. Second, it proposes a physiological approach to calculate mental workload from analyzing the features from brain waves. It uncovered the latent mental changes during the assembly. Furthermore, two deep learning approaches are applied to predict and classify mental workload. The prediction model depicted the trend of mental workload in eighteen seconds based on an eighty-four-second training set, while the classifier recognized two task conditions with different mental workload levels with an accuracy of 93.6%. The results have promising potential for future research in detecting and preventing abnormality in workers' mental status. In addition, it is generalizable to apply in other construction tasks and AR applications.
82

The Role of Constraints and Vehicle Concepts in Transport Design: A Comparison of Cantilever and Strut-Braced Wing Airplane Concepts

Ko, Yan-Yee Andy 15 May 2000 (has links)
The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a strut-braced wing (SBW) aircraft compared to similarly designed cantilever wing aircraft. In this study, four different configurations are examined: cantilever wing aircraft, fuselage mounted engine SBW, wing mounted engine SBW, and wingtip mounted engine SBW. The cantilever wing design is used as a baseline for comparison. Two mission profiles were used. The first called for a 7380 nmi range with a 305 passenger load based on a typical Boeing 777 mission. The second profile was supplied by Lockheed Martin Aeronautical Systems (LMAS) and has a 7500 nmi range with a 325 passenger load. Both profiles have a 0.85 cruise Mach number and a 500 nmi reserve range. Several significant refinements and improvements have been made to the previously developed MDO code for this study. Improvements included using ADIFOR (Automatic Differentiation for FORTRAN) to explicitly compute gradients in the design code. Another major change to the MDO code is the improvement of the optimization architecture to allow for a more robust optimization process. During the Virginia Tech SBW study, Lockheed Martin Aeronautical Systems (LMAS) was tasked by NASA Langley to evaluate the results of previous SBW studies. During this time, the original weight equations which were obtained from NASA Langley's Flight Optimization System (FLOPS) was replaced by LMAS proprietary equations. A detailed study on the impact of the equations from LMAS on the four designs was done, comparing them to the designs that used the FLOPS equations. Results showed that there was little difference in the designs obtained using the new equations. An investigation of the effect of the design constraints on the different configurations was performed. It was found that in all the design configurations, the aircraft range proved to be the most crucial constraint in the design. However, results showed that all three SBW designs were less sensitive to constraints than the cantilever wing aircraft. Finally, a double-deck fuselage concept was considered. A double deck fuselage configuration would result in a greater wing/strut intersection angle which would, in turn, reduce interference drag at that section. Due to the lack of available data on double deck fuselage aircraft, a detailed study of passenger and cargo layout was done. Optimized design showed that there was a small improvement in takeoff gross weight and fuel weight over the single-deck fuselage SBW results when compared with a similarly designed cantilever wing aircraft. / Master of Science
83

Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft

Grasmeyer, Joel M. III 07 May 1998 (has links)
The objective of this study is to use Multidisciplinary Design Optimization (MDO) to investigate the use of truss-braced wing concepts in concert with other advanced technologies to obtain a significant improvement in the performance of transonic transport aircraft. The truss topology introduces several opportunities. A higher aspect ratio and decreased wing thickness can be achieved without an increase in wing weight relative to a cantilever wing. The reduction in thickness allows the wing sweep to be reduced without incurring a transonic wave drag penalty. The reduced wing sweep allows a larger percentage of the wing area to achieve natural laminar flow. Additionally, tip-mounted engines can be used to reduce the induced drag. The MDO approach helps the designer achieve the best technology integration by making optimum trades between competing physical effects in the design space. To perform this study, a suite of approximate analysis tools was assembled into a complete, conceptual-level MDO code. A typical mission profile of the Boeing 777-200IGW was chosen as the design mission profile. This transport carries 305 passengers in mixed class seating at a cruise Mach number of 0.85 over a range of 7,380 nmi. Several single-strut configurations were optimized for minimum takeoff gross weight, using eighteen design variables and seven constraints. The best single-strut configuration shows a 15% savings in takeoff gross weight, 29% savings in fuel weight, 28% increase in L/D, and a 41% increase in seat-miles per gallon relative to a comparable cantilever wing configuration. In addition to the MDO work, we have proposed some innovative, unconventional arch-braced and ellipse-braced concepts. A plastic solid model of one of the novel configurations was created using the I-DEAS solid modeling software and rapid prototyping hardware. / Master of Science
84

Ceilbot Development and Integration

Getahun, Tesfamichael Agidie January 2014 (has links)
The mobile robots that are present today are struggling to deal with challenges related to localization, power supply, mobility in the real world with all sorts of obstacles and other issues. At the same time, the demand for service robots for domestic applications has been growing and predictions show that the demand will continue to grow in the future. To meet the demands and to fulfill the expectations, those challenges need to be addressed. This thesis presents the development of a ceiling mounted robot known as Ceilbot. It is a type of mobile service robot except that it works on a track attached to the ceiling. This implies that the robot operates in a structured environment with continuous power supply simplifying some of the issues mentioned above. The development of the Ceilbot includes a simplified DC motor controller development, object recognition development and an easy-to-use graphical user interface design. The developed motor controller provides flexibility for the user to change the control parameters and produces deterministic output with high repeatability when compared to a regular proportional and integral (PI) controller. The designed user interface simplifies the interaction between the user and the Ceilbot by allowing the user to send commands to the Ceilbot and displaying some status parameters for monitoring. In order to have a complete robot system for demonstration purposes, a simple manipulator using two servomotors is also developed. / <p>Validerat; 20140825 (global_studentproject_submitter)</p>
85

A comparative study between sand- and gravel-bed open channel flows in the wake region of a bed-mounted horizontal cylinder

Devi, K., Hanmaiahgari, P.R., Balachandar, R., Pu, Jaan H. 23 March 2022 (has links)
Yes / In nature, environmental and geophysical flows frequently encounter submerged cylindrical bodies on a rough bed. The flows around the cylindrical bodies on the rough bed are very complicated as the flow field in these cases will be a function of bed roughness apart from the diameter of the cylinder and the flow velocity. In addition, the sand-bed roughness has different effects on the flow compared to the gravel-bed roughness due to differences in the roughness heights. Therefore, the main objective of this article is to compare the mean velocities and turbulent flow properties in the wake region of a horizontal bed-mounted cylinder over the sand-bed with that over the gravel-bed. Three experimental runs, two for the sand-bed and one for the gravel-bed with similar physical and hydraulic conditions, were recorded to fulfil this purpose. The Acoustic Doppler Velocimetry (ADV) probe was used for measuring the three-dimensional (3D) instantaneous velocity data. This comparative study shows that the magnitude of mean streamwise flow velocity, streamwise Reynolds normal stress, and Reynolds shear stress are reduced on the gravel-bed compared to the sand-bed. Conversely, the vertical velocities and vertical Reynolds normal stress are higher on the gravel-bed than the sand-bed. / The Author Ram Balachandar acknowledges the grant support from Natural Sciences and Engineering Research Council of Canada the author Jaan H. Pu acknowledges the grant support from the Hidden Histories of Environmental Science Project (at Seedgrant Stage) by the Natural Environment Research Council (NERC) and Arts and Humanities Research Council (AHRC), part of UK Research and Innovation (UKRI).
86

Wake flow field of a wall-mounted pipe with spoiler on a rough channel bed

Devi, K., Mishra, S., Hanmaiahgari, P.R., Pu, Jaan H. 13 February 2023 (has links)
Yes / This research work focuses on the wake flow region of a cylinder with a spoiler on a rough bed under steady flow conditions. The acoustic Doppler velocimetry was used for the measurement of three-dimensional velocity data for two Reynolds numbers in a fully developed turbulent flow around the cylinder with a spoiler. The mean flow velocities, second-order turbulence structures, and conditional statistics were investigated in the wake region of the spoilered cylinder. The flow was separated from the spoiler with the formation of two shear layers between free surface flow and recirculating flow. It is observed that the flow is reattaching to the bed at 11D irrespective of the Reynolds number. Downstream of the cylinder, the mean velocity distributions are asymmetric due to the wall–wake effect, and the point of inflection is observed for each velocity profile at z = 0.40ẟ. The turbulence intensities, Reynolds stresses, and TKE are highly enhanced in the wake region of the cylinder as compared to their respective upstream values for both runs. The turbulence intensities, Reynolds normal stresses, Reynolds shear stresses, and turbulent kinetic energy are attaining peaks at z = 0.4 ẟ for all the streamwise locations, and the peaks are found to be highest at x = 10D. The quadrant analysis results indicate that the sweeps are dominating bursting events in the inner and intermediate layers, while ejections are dominating in the outer layer of the wake region. As the hole size, H increases ejections stress fraction rises as compared to that of the sweeps in the wake region for z = 0.2–0.7 h.
87

Body-Mounted Robotic System for MRI-Guided Shoulder Arthrography: Cadaver and Clinical Workflow Studies

Patel, Niravkumar, Yan, Jiawen, Li, Gang, Monfaredi, Reza, Priba, Lukasz, Donald-Simpson, Helen, Joy, Joyce, Dennison, Andrew, Melzer, Andreas, Sharma, Karun, Iordachita, Iulian, Cleary, Kevin 30 March 2023 (has links)
This paper presents an intraoperative MRI-guided, patient-mounted robotic system for shoulder arthrography procedures in pediatric patients. The robot is designed to be compact and lightweight and is constructed with nonmagnetic materials for MRI safety. Our goal is to transform the current two-step arthrography procedure (CT/x-ray-guided needle insertion followed by diagnostic MRI) into a streamlined single-step ionizing radiation-free procedure under MRI guidance. The MR-conditional robot was evaluated in a Thiel embalmed cadaver study and healthy volunteer studies. The robot was attached to the shoulder using straps and ten locations in the shoulder joint space were selected as targets. For the first target, contrast agent (saline) was injected to complete the clinical workflow. After each targeting attempt, a confirmation scan was acquired to analyze the needle placement accuracy. During the volunteer studies, a more comfortable and ergonomic shoulder brace was used, and the complete clinical workflow was followed to measure the total procedure time. In the cadaver study, the needle was successfully placed in the shoulder joint space in all the targeting attempts with translational and rotational accuracy of 2.07 ± 1.22mm and 1.46 ± 1.06 degrees, respectively. The total time for the entire procedure was 94 min and the average time for each targeting attempt was 20 min in the cadaver study, while the average time for the entire workflow for the volunteer studies was 36 min. No image quality degradation due to the presence of the robot was detected. This Thiel-embalmed cadaver study along with the clinical workflow studies on human volunteers demonstrated the feasibility of using an MR-conditional, patient-mounted robotic system for MRI-guided shoulder arthrography procedure. Future work will be focused on moving the technology to clinical practice.
88

Subject analysis of depth perception in augmented reality through vuforia and hololens tracking

Muvva, Veera Venkata Ram Murali Krishna Rao 09 August 2019 (has links)
One of the main goals of augmented reality is placing virtual content in the real world at a precise location. To achieve this goal, the Head Mounted Display (HMD) should be able to place virtual content at a precise location, and the users should be able to perceive at the exact location. However, achieving this task is very challenging. Since the birth of augmented reality, researchers have been trying to design AR glasses which can do this. Recently AR researchers by taking advantage of SLAM algorithms are able to come closer to the first phase of this goal. Microsoft designed and manufactured a pair of smart glasses called the HoloLens. It is well known for its advanced SLAM algorithm to place the content in a precise location as close as possible. However, there is no significant research on the perceptual location of the virtual content which are placed through Hololens. Therefore this thesis presents a method for measuring the perceived location of virutal objects, and presents an experiment, where these measurements are made with the Hololens. Through this experiment, interesting information about HoloLens was found, such as the capability of regaining tracking immediately after occlusion, rightward error about the horizontal plane, and bias of floating the virtual content above the surface, and objects that appear to close to the observer. Therfore Hololens is an advanced AR display, it still suffers from these problems.
89

Institutions of Integration: The Incorporation of Frontiers in Modern Democracies, 1864-1912

Fanning, Soren I. 26 October 2010 (has links)
No description available.
90

An investigation into the effect of surface-mounted circular obstructions on flow driven diffusion flames

Davis, John Matthew 16 April 2009 (has links)
No description available.

Page generated in 0.1439 seconds