Spelling suggestions: "subject:"house model""
291 |
Développement d’un modèle murin syngénique et immun de leucémie aiguë myéloïde et de maladie résiduelle mesurable surexprimant ou non le gène Wilms Tumor 1 / Development of a syngeneic and immune mouse model of acute myeloid leukemia and measurable residual disease expressing or not Wilms’ Tumor 1 geneMopin, Alexia 07 December 2018 (has links)
Les leucémies aiguës myéloïdes (LAM) sont des hémopathies malignes hétérogènes déclenchées, dans la plupart des cas, par des anomalies génétiques (mutations, translocations ou inversions). Elles se caractérisent par un blocage de la différenciation de certains progéniteurs ou précurseurs hématopoïétiques (blastes) et leur prolifération clonale incontrôlée provoquant leur accumulation dans la moelle osseuse. Le traitement actuel de ces patients repose essentiellement sur l’utilisation d’agents de chimiothérapie (cytarabine associée à une anthracycline) permettant d’éliminer les cellules leucémiques et d’obtenir une rémission complète (RC) (définie morphologiquement comme une moelle osseuse normale avec moins de 5% de blastes). Cette RC est obtenue chez une majorité des patients mais plus d’un patient sur deux va rechuter quelques mois après l’arrêt du traitement. Ces rechutes attestent de la persistance de cellules leucémiques résiduelles après le traitement, que l’on appelle maladie résiduelle mesurable (MRD). Celle-ci a été mise en évidence grâce au développement de technologies performantes et sensibles tels que la cytométrie en flux multi-paramétrique et la PCR en temps réel (qPCR) permettant ainsi la détection de profils d’expression ou d’anomalies génétiques associés aux LAM. A ce jour, plusieurs mécanismes ont été décrits pour expliquer la présence de cette MRD. Celle-ci peut être causée par une résistance au traitement de certains sous-clones leucémiques (anomalies génétiques intrinsèques leur conférant une résistance ou un phénotype quiescent) ou par la présence de cellules souches leucémiques (naturellement quiescentes). Le système immunitaire pourrait également jouer un rôle en induisant la quiescence de certaines cellules les rendant résistantes aux chimiothérapies conventionnelles, ou en contrôlant leur croissance tumorale par l’établissement d’un état d’équilibre entre leur prolifération et leur lyse. Les modèles murins de LAM actuellement utilisés permettent d’étudier la leucémogenèse et l’efficacité thérapeutique de certains composés mais font abstraction du rôle de la réponse immunitaire dans ces processus du fait de leur immunodéficience. De plus, aucun modèle murin de MRD leucémique n’existe pour étudier les causes de la persistance cancéreuse après traitement par chimiothérapie. Ainsi, le but de cette thèse a été de développer un modèle murin syngénique et immunocompétent de MRD leucémique sur-exprimant ou non le gène Wilms’ Tumor 1 (WT1). WT1 est un des rares antigènes décrits dans les LAM et une réponse lymphocytaire cellulaire et humorale dirigée contre cette protéine a été décrite chez ces patients. La création de ce modèle sur-exprimant ou non WT1 permettra ainsi d’étudier le rôle de la réponse immunitaire spécifique de celui-ci dans la persistance leucémique. Pour développer ce modèle nous avons, dans un premier temps, caractérisé phénotypiquement et génotypiquement des sous-clones isolés de la lignée leucémique C1498 capable d’induire une LAM de type myélo-monocytaire chez des souris immunocompétentes C57BL/6J. Dans un deuxième temps, certains sous-clones ont été sélectionnés pour leur sensibilité à la cytarabine et transfectés de manière à exprimer stablement une protéine fluorescente (ZsGreen) en association ou non avec la protéine WT1. Enfin, ce modèle de MRD leucémique a été obtenu en modulant la quantité de cellules leucémiques injectée ainsi que la cinétique et la dose d’injection de la cytarabine. La MRD a été suivie par cytométrie en flux (expression ZsGreen) et par qPCR (expression ZsGreen et/ou de Wt1) dans le sang et la moelle osseuse des souris survivantes grâce au traitement [...]. / Acute myeloid leukemia (AML) is a genetic disorder leading to a blockade of differentiation and a clonal expansion of hematopoietic progenitors or precursors (called blasts) which accumulate in the bone marrow and then invade the blood stream. Conventional treatment relies on the use of chemotherapy agents (cytarabine in combination with an anthracycline) to eliminate leukemia cells and achieve complete remission (defined as normal bone marrow morphology with less than 5% blasts). This complete remission is achieved in a majority of patients but more than 50% of them will relapse several months after the treatment. These relapses indicate the presence of residual leukemic cells after treatment, known as measurable residual disease (MRD). It has been highlighted by the development of efficient and sensitive molecular biology technologies such as multi-parameter flow cytometry and real-time PCR allowing the detection of AML-associated expression patterns and genetic abnormalities. Several mechanisms have been described that can explain the presence of this MRD. It may be caused by the resistance to treatment of certain leukemic sub-clones (resistance-conferring mutations or quiescent phenotype) or the presence of leukemic stem cells. Finally, the immune system could also induce the quiescence of certain leukemic cells rendering them resistant to conventional chemotherapies, or control their growth leading to a state of equilibrium between their proliferation and lysis. Several AML mouse models allow the study of leukemogenesis and the testing of new therapeutic agents for leukemic cells eradication. However, they are mostly based on the transfer of human leukemic cells in immune-deficient mice and do not provide information about the role of the immune system in the leukemic cell survival, sub-clonal expansion or persistence. Moreover, there is still no available leukemia MRD mouse model allowing the study of leukemic cell persistence after chemotherapy treatment. According to these findings, the aim of this thesis was to develop a syngeneic and immune-competent mouse model of leukemia MRD overexpressing or not the Wilms' Tumor 1 (WT1) gene. The WT1 protein is described as an antigen associated with AML and is targeted by specific lymphocyte cellular and humoral responses in AML-affected patients. Creating a syngeneic and immune-competent leukemia MRD mouse model overexpressing or not this antigen will allow determining the role of this specific immune response in the cancer cell persistence. To set up this model, we first phenotyped and genotyped sub-clones isolated from the murine C1498 leukemic cell line able to induce a myelo-monocytic AML in immune-competent C57BL/6J mice. In a second step, certain sub-clones were selected for their sensitivity to cytarabine treatment and transfected to stably express the fluorescent ZsGreen protein with or without the WT1 antigen. Lastly, the MRD mouse model was obtained after modulation of various parameters such as the amount of leukemic cells administered, the kinetics and injection doses of chemotherapy. The leukemia MRD was monitored by flow cytometry (expression of the ZsGreen protein) and by real-time PCR (expression of the ZsGreen and/or Wt1 genes) in the peripheral blood and the bone marrow of treated and surviving mice. Thus, we generated a syngeneic and immune-competent leukemia MRD mouse model useful to study the immune mechanisms involved in the persistence of leukemic cell after treatment and to test new (immune)-therapeutic strategies targeting these residual cells.
|
292 |
Gene Therapy for Amyotrophic Lateral Sclerosis: An AAV Mediated RNAi Approach for Autosomal Dominant C9ORF72 Associated ALSToro, Gabriela 28 March 2019 (has links)
Amyotrophic lateral sclerosis (ALS) is a terminal neurodegenerative disease that affects motor neurons causing progressive muscle weakness and respiratory failure. In 2011, the presence of a hexanucleotide repeat expansion within chromosome 9 open reading frame 72(C9ORF72) was identified in ALS patient samples, becoming the major known genetic cause for ALS and frontotemporal dementia (FTD). Carriers of this mutation present reduced levels of C9ORF72 mRNA, RNA foci produced by the aggregating expansion and toxic dipeptides generated through repeat-associated non-ATG translation. These findings have led to multiple hypotheses on the pathogenesis of C9ORF72: 1) Haploinsufficiency, 2) RNA gain-of-function, 3) RAN Translation, and 4) Disrupted nucleocytoplasmic trafficking. Due to lack of treatments for this disease, we have pursued an AAV-RNAi dependent gene therapy approach, using an artificial microRNA (amiR) packaged in a recombinant adeno-associated virus (rAAV). After validating our in vitro results, we advanced to in vivo experiments using transgenic mice that recapitulate the major histopathological features seen in human ALS/FTD patients. Adult and neonate mice were injected through clinically relevant routes and our results indicate that AAV9-mediated amiR silencing not only reduced mRNA and protein levels of C9ORF72 but also the expansion derived toxic GP dipeptides. Although our amiR is not targeting the expansion itself but exon 3, we illustrate here that the evident dipeptide decrease is achievable due to the presence of aberrant transcripts in the cytoplasm containing miss-spliced Intron-HRE-C9ORF72 species. These encouraging results have led to the continued testing of this treatment as a therapeutic option for C9ORF72 - ALS patients.
|
293 |
Normal brain tissue reaction after proton irradiationSuckert, Theresa Magdalena 09 December 2021 (has links)
Protonentherapie ist eine wichtige Behandlungsmodalität in der Radioonkologie. Aufgrund einer vorteilhaften Dosisverteilung im bestrahlten Volumen kann diese Bestrahlungsmethode das tumorumgebende Normalgewebe schützen. Dadurch können Nebenwirkungen in bestimmten Patientenpopulationen, zum Beispiel Kindern oder Patienten mit Gehirntumoren, verringert werden. Trotzdem können nach Protonenbestrahlung von Gehirntumorpatienten Normalgewebsschäden auftreten. Gründe dafür können der notwendige klinische Sicherheitssaum im Normalgewebe, der Einfluss der relativen biologischen Wirksamkeit RBE sowie eine erhöhte Strahlensensitivität bestimmter Gehirnregionen sein. Um diese Aspekte zu beleuchten, werden geeignete präklinische Modelle für die Normalgewebsreaktion im Gehirn nach Protonenbestrahlung benötigt. Darüber hinaus kann eine Risikostratifizierung der Patienten durch die Vorhersage von Nebenwirkungswahrscheinlichkeiten oder der Tumorantwort den Behandlungserfolg erhöhen. Auch hier können präklinische Modelle helfen, um neue prädiktive Biomarker zu finden und um die zugrunde liegenden Mechanismen strahleninduzierter Gehirnschäden besser zu verstehen. Das Ziel dieser Dissertation war die Etablierung und Charakterisierung von adäquaten präklinischen Modellen für die Untersuchung von strahleninduzierten Normalgewebsschäden im Gehirn. Diese Modelle bilden die Grundlage für zukünftige Studien zur Untersuchung von RBE Effekten, der spezifische Strahlensensitivität einzelner Gehirnregionen und neuer Biomarker. Die getesteten Modellsysteme waren in vitro Kulturen von adulten organotypischen Gehirnschnitten, Tumorschnittkultur sowie in vivo Bestrahlung von Gehirnsubvolumina, jeweils mit dem Modellorganismus Maus. Die Etablierung eines Bestrahlungssetups in der experimentellen Protonenanlage und dessen dosimetrische Charakterisierung waren von großer Bedeutung für die Durchführung der biologischen Experimente. Ein weiteres Hauptziel war die Definition klinisch relevanter Endpunkte für frühe und späte Nebenwirkungen. Die Gewebsschnitte wurden durch Messungen des Zellüberlebens und der Entzündungsreaktion, sowie mittels in situ Analyse von Zellmorphologie und DNA Schäden untersucht. Als ergänzendes Modell wurde die Tumorschnittkultur etabliert und ähnliche Endpunkte analysiert. Adulte Gehirnschnitte stellten sich als ungeeignet für präklinische Experimente in der Radioonkologie heraus. Die Messungen von Zelltod und Entzündungswerten zeigten eine starke Zellreaktion auf die Inkulturnahme, aber keine auf die Protonenbestrahlung. In der Histologie wurden gestörte Zellmorphologie, reduzierte Vitalität und eingeschränkte Reparaturfähigkeit von DNA Schäden beobachtet. Daher sollten für strahlenbiologische Experimente andere 3D Zellkulturmodelle in Betracht gezogen werden, wie zum Beispiel Organoide oder durch Tissue Engineering hergestellte Kulturen. Durch die Publikation der Daten leistet diese Dissertation einen wichtigen Beitrag zur aktuellen Forschung, da so künftig die limitierten Ressourcen, die für strahlenbiologische Experimente mit Protonen zur Verfügung stehen, auf relevantere Modelle verwendet werden können. Die Bestrahlung von Gehirnsubvolumina in Mäusen wurde mit dem Ziel etabliert, klinisch vergleichbare Felder zu erreichen. Das gewählte Zielvolumen war der rechte Hippocampus; der Protonenstrahl sollte in der Mitte des Gehirns stoppen. Im Rahmen des Projekts wurde ein Arbeitsablauf für präzise und reproduzierbare Bestrahlung entwickelt. Zur Verifizierung wurde der induzierte DNA Schaden ausgewertet und anschließend mit Monte-Carlos Dosissimulationen korreliert. Die Maushirnbestrahlung lieferte wertvolle Ergebnisse für frühe Zeitpunkte (d.h. innerhalb 24 h nach Bestrahlung). Im Verlauf des Projekts wurde ein Algorithmus erstellt, der schnell und zuverlässig die räumliche Verteilung des DNA Schadens in Relation zur Gesamtzellzahl analysiert. Diese Auswertung zeigte, wie bei der Bestrahlungsplanung vorgesehen, ein Stoppen des Protonenstrahls im Gehirn. Eine anschließende Korrelation der Schadensverteilung mit der applizierten Dosis weist nach, dass das Modell einen wichtigen Beitrag zur Untersuchung des RBE leisten kann. In einer darauf folgenden Studie wurde der Dosis-Zeitverlauf der beobachteten Strahlenreaktion des Normalgewebes genauer beleuchtet. Dafür wurden Untersuchungen des Allgemeinzustands der Versuchstiere, regelmäßige Magnetresonanztomografie (MRI) Messungen über einen Zeitraum von sechs Monaten, sowie abschließende Histologie korreliert. Die Volumenzunahme des Kontrastmittelaustritts, die den Zusammenbruch der Blut-Hirn-Schranke anzeigt, wurde konturiert; aus diesen Daten entstand ein prädiktives Dosis-Volumen Modell. Die Pilotstudie konnte eine dosisabhängige Strahlenreaktion nachweisen, die sich im Zusammenbruch der Blut-Hirn-Schranke, einer Hautreaktion mit vorrübergehender Alopezie, Gewichtsabnahme und zelluläre Veränderung äußerte. Das von den MRI Messungen abgeleitete Modell konnte zuverlässig das Eintreten der Nebenwirkungen, den Krankheitsverlauf, sowie die geschätzte Überlebensdauer der Mäuse vorhersagen. Zusätzlich konnte ein Zusammenhang zwischen den MRI Bildänderungen und den pathologischen Gewebsveränderungen beobachtet werden. Durch die außerordentlich homogene Strahlenreaktion der Tiere können aus den vorliegenden Daten künftig zuverlässig geeignete Dosen für spezifische experimentelle Endpunkte bestimmt werden. Zusammenfassend wurden in dieser Arbeit zwei präklinische Modelle für die Protonengehirnbestrahlung etabliert, nämlich organotypische Gewebsschnitte als 3D Zellkulturmodell sowie in vivo Bestrahlung von Gehirnsubvolumina in Mäusen. Während Zellkulturexperimente die Erwartungen nicht erfüllen konnten, stellen sich die Tierexperimente als hervorragendes Modell für translationale Radioonkologie heraus, welches zusätzlich für andere Strahlenqualitäten eingesetzt werden kann. Darauf basierend können aktuelle und zukünftige Studien die Ursachen von strahleninduzierten Normalgewebsschäden im Gehirn beleuchten, RBE Effekte untersuchen und neue prädiktive Biomarker erforschen.:Contents
Abstract i
Zusammenfassung v
Publications ix
List of Figures xiii
List of Acronyms and Abbreviations xiv
1 Introduction 3
2 Background 5
2.1 Proton therapy for brain cancer treatment 5
2.1.1 Fundamentals of radiobiology 5
2.1.2 Proton therapy 6
2.1.3 Tumors of the central nervous system 8
2.2 Radiation effects on brain cells 8
2.2.1 Neurons and myelin 9
2.2.2 Blood-brain barrier 9
2.2.3 Astrocytes 10
2.2.4 Microglia 10
2.3 Principles of histology 11
2.3.1 Hematoxylin & eosin staining 12
2.3.2 Immunohistochemistry 13
2.3.3 Bioimage analysis 13
2.4 Techniques in medical imaging 14
2.4.1 Projectional radiography 14
2.4.2 Computed tomography 14
2.4.3 Magnetic resonance imaging 15
2.5 Preclinical models for radiation injury 17
2.5.1 Technical requirements 17
2.5.2 In vitro models 17
2.5.3 Small animal models 18
3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19
3.1 Aim of the study 19
3.2 Conclusion 19
3.3 Author’s contribution 19
3.4 Publication 21
4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41
4.1 Aim of the study 41
4.2 Conclusion 41
4.3 Author’s contribution 41
4.4 Publication 43
5 Late side effects in normal mouse brain tissue after proton irradiation 51
5.1 Aim of the study 51
5.2 Conclusion 51
5.3 Author’s contribution 52
5.4 Publication 53
6 Discussion 71
6.1 Establishment of preclinical models for radiooncology 71
6.1.1 3D cell culture 71
6.1.2 In vivo irradiation of brain subvolumes 73
6.2 Current applications of the mouse model 75
6.2.1 Ongoing data analysis 75
6.2.2 Innovating on-site imaging 76
6.2.3 RBE investigations 77
6.3 Future studies of radiation-induced brain tissue toxicities 79
Acknowledgement XV
Supplementary Material XVII
1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII
2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI
3 Late side effects in normal mouse brain tissue after proton irradiation XXXI / Proton therapy is an important modality in radiation oncology. Due to a favorable dose distribution in the irradiated volume, this treatment allows to spare tumor-surrounding normal tissue. Although this protection can lead to reduced side effects in certain patient populations, such as brain tumor or pediatric patients, normal tissue toxicities can occur to some extend. This could be due to clinical safety margins around the tumor that lead to dose deposition in the normal tissue. The underlying causes might also be related to relative biological effectiveness (RBE) variations or elevated radiosensitivity of certain brain regions. To address these issues, suitable preclinical models for normal brain tissue reaction after proton therapy are needed. In addition, patient stratification to predict the tumor response or the probability of side effects will contribute to increased treatment effectiveness. Preclinical models can improve the process of finding new predictive biomarkers and help to understand underlying mechanisms of radiation-induced brain injury. The aim of this thesis was to establish and characterize suitable preclinical models of brain tissue irradiation effects and set the base for future studies designed to reveal RBE effects, brain region specific radiation sensitivities, and novel biomarkers. The tested model systems were in vitro organotypic brain slice culture (OBSC) and in vivo irradiation of brain subvolumes, both on mouse brain tissue. Setup establishment at the experimental proton beam line and subsequent dosimetry built the foundation for conducting the biological experiments. Additionally, one main goal was defining clinically relevant endpoints for both short- and long-term effects. For OBSC, assays for cell death and inflammation, as well as in situ analysis of cell morphology and DNA damage induction were tested. As comparative model to OBSC, tumor slice culture was established and the results were also used for proton investigation. Adult OBSC turned out as inadequate model for preclinical experiments in radiation oncology. The assays measuring cell death and inflammation indicated a severe reaction during the first days in culture, but no response to irradiation. Histology revealed deficient cell morphology, reduced vitality and impaired DNA damage repair. In conclusion, other 3D cell culture models, such as organoids or tissue engineered constructs, should be considered for radiobiological experiments with protons. By publishing the observations, this thesis contributes to conserving the limited resources of proton radiobiology for more meaningful models. A methodology for irradiation of mouse brain subvolumes was established with a focus on creating fields comparable to clinical practice. The chosen target was the right hippocampus and the goal was to stop the proton beam in the middle of the brain. The project included a workflow for this precise irradiation in a robust and reproducible manner. Evaluation of the induced DNA damage and its correlation to Monte Carlo dose simulations were used for verification. Irradiation of mouse brain subvolumes yielded valuable results for early (i.e. within 24 h after irradiation) time points. An evaluation algorithm was designed for fast and robust analysis of spatial DNA damage distribution in relation to the total cell count. This ratio showed that the beam stopped in the brain tissue, in accordance to the treatment planning. Furthermore, the DNA damage could be reliably correlated with the dose simulation, which proves the value of the presented model for future RBE studies. In a follow-up experiment, the dose-time relationship of induced normal tissue reactions was analysed. For this, scoring of the animals' health status was combined with regular MRI measurements over the course of up to 6 months, and final histopathology. The volume increase of contrast agent leakage - representing breakdown of the blood brain barrier (BBB) - was contoured and the data was used to create a dose-volume response model. This pilot study on long-term radiation effects revealed dose-dependent normal tissue toxicities, including breakdown of the BBB, a skin reaction with temporary alopecia, weight reduction and changes on the cellular level. The model derived from MRI data reliably predicts onset of side effects, volume of brain damage as well as the expected animal survival. In addition, MRI image changes could be correlated to underlying tissue alterations by histopathology. Due to the uniform radiation response of the animals this data set enables to determine endpoint-specific dose values in future experiments. In conclusion, two preclinical models for proton brain irradiation were established, namely OBSC as 3D cell culture model and in vivo irradiation of mouse brain subvolumes. While the former could not yield the anticipated results, the latter emerged as excellent model for translational radiooncology, which can also be applied for experiments with other radiation types. Ongoing and future studies will focus on revealing the causes of normal brain tissue toxicities, studying RBE effects, and investigating new predictive biomarkers.:Contents
Abstract i
Zusammenfassung v
Publications ix
List of Figures xiii
List of Acronyms and Abbreviations xiv
1 Introduction 3
2 Background 5
2.1 Proton therapy for brain cancer treatment 5
2.1.1 Fundamentals of radiobiology 5
2.1.2 Proton therapy 6
2.1.3 Tumors of the central nervous system 8
2.2 Radiation effects on brain cells 8
2.2.1 Neurons and myelin 9
2.2.2 Blood-brain barrier 9
2.2.3 Astrocytes 10
2.2.4 Microglia 10
2.3 Principles of histology 11
2.3.1 Hematoxylin & eosin staining 12
2.3.2 Immunohistochemistry 13
2.3.3 Bioimage analysis 13
2.4 Techniques in medical imaging 14
2.4.1 Projectional radiography 14
2.4.2 Computed tomography 14
2.4.3 Magnetic resonance imaging 15
2.5 Preclinical models for radiation injury 17
2.5.1 Technical requirements 17
2.5.2 In vitro models 17
2.5.3 Small animal models 18
3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19
3.1 Aim of the study 19
3.2 Conclusion 19
3.3 Author’s contribution 19
3.4 Publication 21
4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41
4.1 Aim of the study 41
4.2 Conclusion 41
4.3 Author’s contribution 41
4.4 Publication 43
5 Late side effects in normal mouse brain tissue after proton irradiation 51
5.1 Aim of the study 51
5.2 Conclusion 51
5.3 Author’s contribution 52
5.4 Publication 53
6 Discussion 71
6.1 Establishment of preclinical models for radiooncology 71
6.1.1 3D cell culture 71
6.1.2 In vivo irradiation of brain subvolumes 73
6.2 Current applications of the mouse model 75
6.2.1 Ongoing data analysis 75
6.2.2 Innovating on-site imaging 76
6.2.3 RBE investigations 77
6.3 Future studies of radiation-induced brain tissue toxicities 79
Acknowledgement XV
Supplementary Material XVII
1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII
2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI
3 Late side effects in normal mouse brain tissue after proton irradiation XXXI
|
294 |
Tvorba a analýza dvojnásobně deficientních trasgenních myší pro kalikrein 5 a kalikrein 14 / Generation and analysis of double deficient transgenic mice for kallikrein-related peptidase 5 and kallikrein-related peptidase 14Hanečková, Radmila January 2016 (has links)
Kallikrein-related peptidases (KLKs) constitute a highly conserved serine protease family. Based on in vitro experiments, KLKs are predicted to play an important role in a number of physiolog- ical and pathophysiological processes. However, their role in vivo remains not fully understood, partially due to a lack of suitable animal models. In this work, we aim to prepare a KLK5 and KLK14 double-deficient mouse model. Both KLK5 and KLK14 were proposed to be involved in epidermal proteolytic networks critical for maintaining skin homeostasis. However, both KLK5 and KLK14 single-deficient mouse models show minimal or no phenotype, likely due to similar substrate specificity resulting in functional compensation. Double-deficient mice cannot be easily obtained by crossing due to localization of the Klk5 and Klk14 genes within the same locus on chromosome 7. We report that KLK5 and KLK14 double-deficient mice were success- fully generated, mediated by transcription activator-like effector nucleases (TALENs) targeting Klk14 by microinjection of TALEN mRNA into KLK5-deficient zygotes. Furthermore, we show that KLK5 and KLK14 double-deficient mice are viable and fertile. We believe that these novel mouse models may serve as a useful experimental tool to study KLK5 and KLK14 in vivo.
|
295 |
Quantitative analysis of neuropathological alterations in two transgenic mouse models of Alzheimer's diseaseKurdakova, Anastasiia 23 November 2016 (has links)
No description available.
|
296 |
Vliv genotypu na průběh infekce Trypanosoma brucei brucei u myši / Genetic influenceof Trypanosoma brucei brucei infection in miceŠíma, Matyáš January 2010 (has links)
Genetic influence of Trypanosoma brucei brucei infection in mice The African trypanosomes are zoonotic parasites transmitted by Tse-Tse flies. Two of the three subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, cause sleeping sickness in humans whereas the third subspecies, Trypanosoma brucei brucei is not infective to humans. These parasites are members of Kinetoplastida. Trypanosomes are extracellular parasite witch have complex life cycles involving both insect and mammalian hosts. African trypanosomes after infection penetrate mainly vascularized organs and get into brain where cause serious pathology. Parasite can manipulate with immune system of mammal host in wide spectrum of interactions witch are not clearly understood so far. Discovering of a new immune mechanisms, whitch participite in reaction on african trypanosomes, can reveal some general characteristics of immune system. The results of these studies can help to prepare effective drugs and vaccines against this disease. The best way to observe pathological manifestation and genetical analysis is study on animal models . Study on suitable animal model to find genes which are responsible for control of immune response to T. brucei can help us to find homologous genes in humans. It was found that immune responces to...
|
297 |
Role of Protein Arginine Methyltransferase 5 in T cell metabolism and alternative splicingSengupta, Shouvonik January 2021 (has links)
No description available.
|
298 |
Onset and Progression of Neurodegeneration in Mouse Models for Defective EndocytosisRostosky, Christine Melina 09 November 2018 (has links)
No description available.
|
299 |
Treatment and genetic analysis of craniofacial deficits associated with down syndromeTumbleson, Danika M. 12 December 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and occurs in ~1 of every 700 live births. Individuals with DS present craniofacial abnormalities, specifically an undersized, dysmorphic mandible which may lead to difficulty with eating, breathing, and speech. Using the Ts65Dn DS mouse model, which mirrors these phenotypes and contains three copies of ~50% Hsa21 homologues, our lab has traced the mandibular deficit to a neural crest cell (NCC) deficiency in the first pharyngeal arch (PA1 or mandibular precursor) at embryonic day 9.5 (E9.5). At E9.5, the PA1 is reduced in size and contains fewer cells due to fewer NCC populating the PA1 from the neural tube (NT) as well as reduced cellular proliferation in the PA1. We hypothesize that both the deficits in NCC migration and proliferation may cause the reduction in size of the PA1. To identify potential genetic mechanisms responsible for trisomic PA1 deficits, we generated RNA-sequence (RNA-seq) data from euploid and trisomic E9.25 NT and E9.5 PA1 (time points occurring before and after observed deficits) using a next-generation sequencing platform. Analysis of RNA-seq data revealed differential trisomic expression of 53 genes from E9.25 NT and 364 genes from E9.5 PA1, five of which are present in three copies in Ts65Dn. We also further analyzed the data to find that fewer alternative splicing events occur in trisomic tissues compared to euploid tissues and in PA1 tissue compared to NT tissue. In a subsequent study, to test gene-specific treatments to rescue PA1 deficits, we targeted Dyrk1A, an overexpressed DS candidate gene implicated in many DS phenotypes and predicted to cause the NCC and PA1 deficiencies. We hypothesize that treatment of pregnant Ts65Dn mothers with Epigallocatechin gallate (EGCG), a known Dyrk1A inhibitor, will correct NCC deficits and rescue the undersized PA1 in trisomic E9.5 embryos. To test our hypothesis, we treated pregnant Ts65Dn mothers with EGCG from either gestational day 7 (G7) to G8 or G0 to G9.5. Our study found an increase in PA1 volume and NCC number in trisomic E9.5 embryos after treatment on G7 and G8, but observed no significant improvements in NCC deficits following G0-G9.5 treatment. We also observed a developmental delay of embryos from trisomic mothers treated with EGCG from G0-G9.5. Together, these data show that timing and sufficient dosage of EGCG treatment is most effective during the developmental window the few days before NCC deficits arise, during G7 and G8, and may be ineffective or harmful when administered at earlier developmental time points. Together, the findings of both studies offer a better understanding of potential mechanisms altered by trisomy as well as preclinical evidence for EGCG as a potential prenatal therapy for craniofacial disorders linked to DS.
|
300 |
Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomesCraven, Kelly E. 11 April 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pancreatic ductal adenocarcinoma (PDAC), which comprises 85% of pancreatic cancers, is the 4th leading cause of cancer death in the United States with a 5-year survival rate of 8%. While human PDACs (hPDACs) are hypovascular, they also overexpress a number of angiogenic growth factors and receptors. Additionally, the use of anti-angiogenic agents in murine models of PDAC leads to reduced tumor volume, tumor spread, and microvessel density (MVD), and improved survival. Nonetheless, clinical trials using anti-angiogenic therapy have been overwhelmingly unsuccessful in hPDAC. On the other hand, pancreatic neuroendocrine tumors (PNETs) account for only 2% of pancreatic tumors, yet they are very vascular and classically angiogenic, respond to anti-angiogenic therapy, and confer a better prognosis than PDAC even in the metastatic setting. In an effort to compare and contrast the angiogenic transcriptomes of these two tumor types, we analyzed RNA-Sequencing (RNA-Seq) data from The Cancer Genome Atlas (TCGA) and found that a pro-angiogenic gene signature is present in 35% of PDACs and that it is mostly distinct from the angiogenic signature present in PNETs. The pro-angiogenic PDAC subgroup also exhibits a transcriptome that reflects active TGF-β signaling, less frequent SMAD4 inactivation than PDACs without the signature, and up-regulation of several pro-inflammatory genes, including members of JAK signaling pathways. Consequently, targeting the TGF-β receptor type-1 kinase with SB505124 and JAK1/2 with ruxolitinib blocks proliferative crosstalk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs). Additionally, treatment of the KRC (oncogenic Kras, homozygous deletion of Rb1) and KPC (oncogenic Kras, mutated Trp53) genetically engineered PDAC mouse models with ruxolitinib suppresses murine PDAC (mPDAC) progression only in the KRC model, which shows superior enrichment and differential expression of the human pro-angiogenic gene signature as compared to KPC tumors. These findings suggest that targeting both TGF-β and JAK signaling in the 35% of PDAC patients whose cancers exhibit an pro-angiogenic gene signature should be explored in a clinical trial.
|
Page generated in 0.0515 seconds