• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Role for Calpain 4 in Podosome Assembly

Dowler, THOMAS 27 September 2008 (has links)
Podosomes are adhesive and invasive structures which may play an important role in numerous physiological and pathological conditions including angiogenesis, atherosclerosis, and cancer metastasis. Recently, the cysteine protease m-calpain (m-Capn) has been shown to cleave cortactin, an integral component of the podosomal F-actin core, as well as various proteins found in the peripheral adhesive region leading to the disassembly of these dynamic structures. In this study, I investigated whether Capn plays a role in the formation of podosomes downstream of c-Src. I show that: 1) phorbol-12, 13-dibutyrate (PDBu) as well as c-Src-Y527F expression induces podosome formation in mouse embryonic fibroblasts; 2) PDBu- and constitutively active c-Src-induced podosome formation is inhibited by the knockout of the m- and µ-Capn small regulatory subunit Capn4 in mouse embryonic fibroblasts (Capn4-/-), but is partially restored by re-expression of Capn4; 3) Capn4 localizes to podosomes; and 4) Inhibition of m- and µ-Capn proteolytic activity by the cell permeable calpain inhibitors has little effect on the formation of podosomes downstream of active c-Src. I conclude that Capn4 may play a role in the assembly phase of podosomes independent of calpain proteolytic activity. Work done in collaboration to determine a possible mechanism of action for the role of Capn4 in podosome assembly indicates that a possible binding partner of Capn4, β-PIX, co-localizes with, and shows in vivo association with Capn4. Furthermore, β-PIX and Capn4 bind directly in vitro in the presence of Ca2+. We conclude that Capn4 plays a role in podosome assembly, and this role may be through direct interaction with β-PIX in a calcium-dependent manner. / Thesis (Master, Biochemistry) -- Queen's University, 2008-09-26 16:16:00.768
2

In Vitro and In Vivo Studies with Measles Virus and its Interaction with the Mouse Innate Immune System

Ha, Michael Neul 21 August 2012 (has links)
Measles is one of the most contagious diseases known to mankind. Despite the availability of a safe and effective vaccine, approximately 164,000 measles-related deaths were recorded in 2008. The inherent restricted host tropism of MV means that the development of authentic rodent models will be a valuable research tool in testing new vaccines and antivirals. In addition to the receptor requirement, mouse innate immunity has been shown to inhibit MV growth. In this thesis, the contributions of several key components of the mouse innate immune system on the inhibition of MV replication were examined. The transcription factor interferon regulatory factor 3 (IRF3), which normally plays a key role in mediating innate immune signaling, contributed relatively little in inhibiting MV replication both in vitro and in vivo. In contrast, the JAK/STAT pathway and the double-stranded RNA inducible protein kinase, PKR, played more important roles in controlling virus replication. The resurgence of measles in areas where the virus was once thought to be eradicated makes the development of anti-MV treatments essential. Concurrent to the development of an animal model to better study its pathogenesis, we wanted to look at the effect of MV inhibitors on its replication. The MV fusion inhibitor, carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine (ZfFG), was developed in the past to study fusion; however, its mechanism of action has not yet been elucidated. To examine this, spontaneous ZfFG-resistant mutants were generated and characterized. Mutations were found in the HRB region of the fusion (F) protein, and when these were modeled using published paramyxovirus F crystal structures, data suggested that ZfFG targeted a small pocket present between the head and stalk regions of its pre-fusion conformation. An authentic mouse model of measles developed from findings in this study may allow for in vivo efficacy testing of ZfFG in the future.
3

In Vitro and In Vivo Studies with Measles Virus and its Interaction with the Mouse Innate Immune System

Ha, Michael Neul 21 August 2012 (has links)
Measles is one of the most contagious diseases known to mankind. Despite the availability of a safe and effective vaccine, approximately 164,000 measles-related deaths were recorded in 2008. The inherent restricted host tropism of MV means that the development of authentic rodent models will be a valuable research tool in testing new vaccines and antivirals. In addition to the receptor requirement, mouse innate immunity has been shown to inhibit MV growth. In this thesis, the contributions of several key components of the mouse innate immune system on the inhibition of MV replication were examined. The transcription factor interferon regulatory factor 3 (IRF3), which normally plays a key role in mediating innate immune signaling, contributed relatively little in inhibiting MV replication both in vitro and in vivo. In contrast, the JAK/STAT pathway and the double-stranded RNA inducible protein kinase, PKR, played more important roles in controlling virus replication. The resurgence of measles in areas where the virus was once thought to be eradicated makes the development of anti-MV treatments essential. Concurrent to the development of an animal model to better study its pathogenesis, we wanted to look at the effect of MV inhibitors on its replication. The MV fusion inhibitor, carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine (ZfFG), was developed in the past to study fusion; however, its mechanism of action has not yet been elucidated. To examine this, spontaneous ZfFG-resistant mutants were generated and characterized. Mutations were found in the HRB region of the fusion (F) protein, and when these were modeled using published paramyxovirus F crystal structures, data suggested that ZfFG targeted a small pocket present between the head and stalk regions of its pre-fusion conformation. An authentic mouse model of measles developed from findings in this study may allow for in vivo efficacy testing of ZfFG in the future.

Page generated in 0.0499 seconds