Spelling suggestions: "subject:"mouvement brownian play"" "subject:"mouvement browning play""
1 |
Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymèreVakeroudis, Stavros 06 April 2011 (has links) (PDF)
Dans cette thèse de Doctorat, on étudie dans un premier temps les processus d'Ornstein-Uhlenbeck à valeurs complexes (Zt = Xt + iYt, t ≥ 0), où (Xt, t ≥ 0) et (Yt, t ≥ 0) sont ses coordonnées cartésiennes. En prenant le paramètre du processus d'Ornstein-Uhlenbeck égal à 0, on discute, en particulier, le cas du mouvement brownien plan. Plus précisément, on étudie la distribution de certains temps d'atteinte associés aux nombres de tours autour d'un point fixé. Pour obtenir des résultats analytiques, on utilise et on étend l'identité de Bougerol. Cette identité dit que, pour un mouvement brownien réel Nous développons quelques identités en loi concernant les processus d'Ornstein-Uhlenbeck à valeurs complexes, qui sont équivalentes à l'identité de Bougerol. Ces identités nous permettent de caractériser les lois de temps d'atteinte Tc ≡ inf{t : θt = c}, (c > 0) du processus continu des nombres de tours θt, t ≥ 0 associé au processus d'Ornstein-Uhlenbeck à valeurs complexes Z. De plus, on étudie la distribution du temps aléatoire T−d,c ≡ inf{t : θt= −d ou c}, (c, d > 0) et particulièrement de T−c,c ≡ inf{t : θt=−c, c}, (c > 0). Une étude approfondie de l'identité de Bougerol montre que 1/Au(β), où Au(β) est l'horloge qui intervient dans l'identité de Bougerol, considéré sous une mesure appropriée, changée à partir de la mesure de Wiener, est infiniment divisible. En utilisant les résultats précédents, on estime le temps de rotation moyen, noté TRM. Ce dernier est la moyenne du premier temps pour qu'un polymère plan modélisé comme une collection de n cordes paramétrées par un angle brownien fasse un tour autour d'un autre point (winding). On est ainsi conduit à étudier une somme d'exponentielles i.i.d. avec un mouvement brownien réél en argument. On montre que la position finale satisfait à une nouvelle équation stochastique, avec un drift non-linéaire. Finalement, on obtient une formule asymptotique pour le TRM. Le terme dominant dépend de √n et, notablement, il dépend aussi faiblement de la configuration initiale moyenne. Nos résultats analytiques sont confirmés par des simulations browniennes.
|
2 |
Applications du calcul stochastique à l'étude de certains processusGradinaru, Mihai 07 December 2005 (has links) (PDF)
Ce document contient la synthèse des travaux de recherche effectués <br />entre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de <br />certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion, <br />mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou <br />d'équations aux dérivées partielles stochastiques.<br />La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes <br />suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions, <br />grandes déviations pour un processus obtenu par perturbation brownienne d'un système <br />dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique <br />pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire, <br />étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique, <br />étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à<br />frontière absorbante et enfin, estimation non-paramétrique et construction d'un <br />test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une <br />équation différentielle stochastique. <br />Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique. <br />On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles <br />et de l'analyse.
|
Page generated in 0.1204 seconds