• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and modeling of pressure pulse propagation in fluids inside drill strings

Namuq, Mohammed Ali 21 March 2013 (has links) (PDF)
Modern bottom-hole assemblies are equipped with various sensors which measure the geological and directional information of the borehole while drilling. It is very crucial to get the measured downhole information to the surface in real time in order to be able to monitor, steer and optimize the drilling process while drilling. The transmission of the information to the surface is most commonly carried out by coded pressure pulses (the technology called mud pulse telemetry) which propagate through the drilling mud inside the drill string towards the surface. However, hardly any specific experimental research on the hydraulic data transmission can be found in the literature. Moreover, it is essential to use a reliable model/simulation tool which can more accurately simulate the pressure pulse propagation in fluids inside drill strings under various drilling operation conditions in order to improve the performance of the data transmission process. The aims of this study are to develop and test a laboratory experimental setup, a simulation model and a novel method for detecting and decoding of measurement while drilling pressure pulse propagation in fluids inside drill strings. This thesis presents a laboratory experimental setup for investigating the process of data transmission in boreholes by mud pulse telemetry. The test facility includes a flow loop, a centrifugal pump, a positive mud pulser or alternatively a mud siren, pressure transducers at four different locations along the flow loop and a data collection system. Moreover, it includes an “actuator system” for the simulation of typical noise patterns created by the common duplex or triplex mud pumps. This laboratory setup with great capabilities opens the way for testing and developing new concepts for data transmission. A theoretical model using ANSYS CFX11 (Computational Fluid Dynamics (CFD) commercial code) was successfully developed to simulate dynamic pressure pulse transmission behavior in the fluid inside the flow loop. The collected laboratory data which simulate various data transmission processes in boreholes were used to verify and calibrate the theoretical method. A pretty good agreement is achieved between the predicted and measured pressure pulses at different locations along the flow loop for positive pulses with various durations using different flow rates and for continuous pressure pulses using different carrier frequencies. A novel approach (continuous wavelet transformation) for detecting and decoding the received continuous pressure pulses in a noisy environment was applied to various simulated drilling operation conditions for data transmission in boreholes in the laboratory. The concept was registered at the German Patent and Trade Mark Office (DPMA) for a patent in 2011. The results indicate that the continuous wavelet transformation can be used to clearly identify and better detect the continuous pressure pulse periods, frequencies and discontinuity positions in the time domain compared to the conventional method (Fourier transformation). This method will contribute to the possibility of transmitting the data at higher rates and over longer distances. A concept for developing an innovative pulser using electrical discharge or acoustic sources for inducing pulses keeping the drill strings fully open (eliminating the problem of plugging the pulser by pumped lost circulation materials) and without any mechanical moving parts (eliminating the failure related to the pulser moving parts) was also registered at the German Patent and Trade Mark Office (DPMA) for a patent in 2012. With this pulser, it is expected that it would be possible to transmit the data over longer distances and at higher rates. Realizing the concept of the new pulser and using continuous wavelet transformation for detecting and decoding the pulser signal are recommended for future work.
2

Simulation and modeling of pressure pulse propagation in fluids inside drill strings

Namuq, Mohammed Ali 20 February 2013 (has links)
Modern bottom-hole assemblies are equipped with various sensors which measure the geological and directional information of the borehole while drilling. It is very crucial to get the measured downhole information to the surface in real time in order to be able to monitor, steer and optimize the drilling process while drilling. The transmission of the information to the surface is most commonly carried out by coded pressure pulses (the technology called mud pulse telemetry) which propagate through the drilling mud inside the drill string towards the surface. However, hardly any specific experimental research on the hydraulic data transmission can be found in the literature. Moreover, it is essential to use a reliable model/simulation tool which can more accurately simulate the pressure pulse propagation in fluids inside drill strings under various drilling operation conditions in order to improve the performance of the data transmission process. The aims of this study are to develop and test a laboratory experimental setup, a simulation model and a novel method for detecting and decoding of measurement while drilling pressure pulse propagation in fluids inside drill strings. This thesis presents a laboratory experimental setup for investigating the process of data transmission in boreholes by mud pulse telemetry. The test facility includes a flow loop, a centrifugal pump, a positive mud pulser or alternatively a mud siren, pressure transducers at four different locations along the flow loop and a data collection system. Moreover, it includes an “actuator system” for the simulation of typical noise patterns created by the common duplex or triplex mud pumps. This laboratory setup with great capabilities opens the way for testing and developing new concepts for data transmission. A theoretical model using ANSYS CFX11 (Computational Fluid Dynamics (CFD) commercial code) was successfully developed to simulate dynamic pressure pulse transmission behavior in the fluid inside the flow loop. The collected laboratory data which simulate various data transmission processes in boreholes were used to verify and calibrate the theoretical method. A pretty good agreement is achieved between the predicted and measured pressure pulses at different locations along the flow loop for positive pulses with various durations using different flow rates and for continuous pressure pulses using different carrier frequencies. A novel approach (continuous wavelet transformation) for detecting and decoding the received continuous pressure pulses in a noisy environment was applied to various simulated drilling operation conditions for data transmission in boreholes in the laboratory. The concept was registered at the German Patent and Trade Mark Office (DPMA) for a patent in 2011. The results indicate that the continuous wavelet transformation can be used to clearly identify and better detect the continuous pressure pulse periods, frequencies and discontinuity positions in the time domain compared to the conventional method (Fourier transformation). This method will contribute to the possibility of transmitting the data at higher rates and over longer distances. A concept for developing an innovative pulser using electrical discharge or acoustic sources for inducing pulses keeping the drill strings fully open (eliminating the problem of plugging the pulser by pumped lost circulation materials) and without any mechanical moving parts (eliminating the failure related to the pulser moving parts) was also registered at the German Patent and Trade Mark Office (DPMA) for a patent in 2012. With this pulser, it is expected that it would be possible to transmit the data over longer distances and at higher rates. Realizing the concept of the new pulser and using continuous wavelet transformation for detecting and decoding the pulser signal are recommended for future work.
3

Development, simulation and practical investigation of the multi-frequency siren concept to increase data transmission rates

Bamisebi, Adetiloye Joseph 30 April 2024 (has links)
In the continuous search for Hydrocarbon and Geothermal resources in the earth, wells are drilled for various purposes. Wildcat, Appraisal, Production and Injection wells are drilled for proper field development and operation. Based on the purpose and plan for the wells, trajectory and targets are defined. During drilling, continuous monitoring of trajectory, rock and fluid characteristics are required to achieve defined objectives. Measurement while Drilling (MWD) and Logging while Drilling (MWD) systems are included as part of the Bottom Hole Assembly (BHA) to perform continuous measurement and transmission of downhole data to the surface. Measured data are converted to binary form and transferred to the surface for further processing and interpretation. Several methods of data transfer are possible albeit with various pros and cons. Currently, the most widely used method of transfer still remains the Mud Pulse Telemetry (MPT) system which makes use of the mud (drilling fluid) within the system for transmission of data. The major focus of this research was to further expand the envelope in the research towards increasing data transmission rates using the mud siren, a form of mud pulse telemetry. This research includes practical investigations which was conducted within the unique Flow Loop Laboratory at the Institute of Drilling and Fluid Mining, TU Bergakademie Freiberg. Within the research, minor adjustments were made to the flow loop facility to align with realities expected on the Rig. Effects of the changes made were evaluated and presented. The pulser section of the flow loop was also redesigned and new mud sirens manufactured to allow for the practical investigation in series and parallel. The major concept for increasing data transmission rate investigated in this research is the Multifrequency Mud Siren transmission in series and parallel. Following up with previous research, simulation of the flop loop scenario using ANSYS CFX was done to allow for numerical evaluation of the multifrequency transmission concept. Simulation runs were performed with various scenarios both in series and parallel, results evaluated and analyzed thereafter. A little mention on the amplification theory was also investigated and results shown. For the practical experiments, the pulser section was redesigned to allow investigations both into the series and parallel conditions for multifrequency transmission. Various experimental flow runs were successfully performed, observations recorded, data analyzed using MATLAB and results discussed. In closing, a conceptual design that contributes towards the possible field application of the Multifrequency transmission concept was developed. The Compact Double Multifrequency Siren concept was designed to aid easier adaptation of the Multifrequency transmission concept both in series and parallel.:Table of Contents Declaration ii Abstract iii Acknowledgements v List of Abbreviations vi List of Symbols viii Table of Contents x 1. Introduction 1 2. Literature Review and Fundamentals 5 2.1. Historical perspective 5 2.1.1. Introduction 5 2.1.2. Mud Pulse Telemetry 6 2.1.3. Telemetry drill pipe 7 2.1.4. Electromagnetic telemetry 7 2.1.5. Acoustic Telemetry 8 2.2. Mud Pulse Telemetry devices 9 2.2.1. Positive Pulser 9 2.2.2. Negative Pulser 10 2.2.3. Mud Siren 11 2.2.4. Oscillating Shear Valve 12 2.3. Modulation Techniques for Data Transmission 13 2.3.1. Baseband Transmission 13 2.3.2. Passband Transmission 15 2.4. Signal Transformation and Processing 16 2.4.1. Fourier Transformation 17 2.4.2. Short time Fourier Transformation 17 2.4.3. Continuous Wavelet Transformation 18 2.5. Summary of Previous Research Work on the Flowloop 19 3. Flowloop setup and current changes 21 3.1. Description of Flowloop 21 3.1.1. General overview of Flowloop 21 3.1.2. Pulser Prototypes 25 3.2. Improvement in Flow Loop Set-Up 28 3.2.1. Pump Change Justification 28 3.2.2. Pump replacement 35 3.2.3. Analysis of Pump Replacement 36 4. ANSYS Modelling and Simulation of the Multi Frequency Mud Siren in Series and Parallel 47 4.1. Basics of Numerical simulation with ANSYS CFX 48 4.2. Mesh Generation and Quality 51 4.3. Modelling 53 4.4. CFX-Pre Set-up and Post view 54 4.5. Flow Simulation Results in Series and Parallel 57 5. Laboratory Investigation on the Multi-Frequency Mud Siren Concept 64 5.1. Experiment Background and setup 64 5.2. Laboratory Practical Results and Analysis 68 5.2.1. Series Transmission Test 1: Single Siren vs Double Siren, Same Frequency 69 5.2.2. Series Transmission Test 2: Double Siren, Multi Frequency 72 5.2.3. Series Transmission Test 3: Double Siren, Multi Frequency Data String Transmission 75 5.2.4. Parallel Transmission Test 1: Single Siren vs Double Siren, Same Frequency 79 5.2.5. Parallel transmission test 2: Double siren, multi frequency 82 5.2.6. Parallel transmission test 3: Double siren, multi frequency Data String Transmission 84 6. Discussion on the Multi-Frequency Mud Siren Simulation and Practical Results 89 6.1. Result Discussion 89 6.2. Challenges and Sources of Errors 93 7. Outlook 100 7.1 Future Work (Compact Multifrequency Mud Siren) 100 7.2 Recommendations 106 8. Conclusion 107 9. References 111 10. List of Figures 114 11. List of Tables 120 12. Appendix 121
4

Development and testing of alternative methods for speeding up the hydraulic data transmission in deep boreholes

Berro, Mouhammed Jandal 15 February 2019 (has links)
For developing the available hydrocarbon reserves and for exploring new reservoirs, deeper and more complex wells are drilled. Drilling such deeper and complex wells requires a constant monitoring and controlling of the well paths. Therefore, the bottom hole assembly, the lower section of the drill string above the drill bit, is equipped with numerous measuring sensors for collecting geological and directional data while drilling. The collected data have to be transmitted to the surface in real time. Prior to transmit the data measured downhole to the surface, they are processed and translated into a binary code. Accordingly, the data will be represented as a series of zeroes and ones. The most common method for data transmission in boreholes is the so called mud pulse telemetry which sends the information through the drilling mud inside the drill string by means of coded pressure pulses. There are two types of devices available for downhole pressure pulses generation. The first type is the (positive or negative) pressure pulser which transmits the data by quasi-static variations of the pressure level inside the drill string. The second type is the (rotating or oscillating) mud siren which transmits the data by generating continuous pressure waves at specific frequencies. The main disadvantage of the mud pulse telemetry is its low data transmission rate which is about 10 bps. This data rate is very low compared to the measured amount of raw data. Therefore, the efficiency of the mud pulse telemetry must be improved, so that the data could be transmitted at higher rates. The present research work presents different developed and tested concepts for increasing the efficiency and the data transmission rate of the mud pulse telemetry. Both, the transmitter and the receiver end, were taken into consideration by developing the new concepts. Different hardware and software tools were used for performing the present research work. The available flow loop test facility and the experimental prototypes of the mud siren and positive pulser were used. The test facility was extended in order to enable the investigation of the new concepts. The available 3D numerical model (ANSYS CFX) was modified and extended in order to study the new concepts. At the transmitter end, a novel concept for a hybrid mud pulse telemetry system was developed and successfully tested. Here, two different types of mud pulse telemetry could be used in a combination, such as a mud siren and a pressure pulser. The developed concept was registered at the German Patent and Trade Mark Office for a patent in 2018. Two concepts for a multi-frequency mud siren were developed for simultaneous generation of two frequencies. In the first approach, two sets of stator/rotor were installed in a row connection, while they were installed in a parallel connection in the second approach. The two concepts were registered at the German Patent and Trade Mark Office for patents in 2015. An experimental multi-frequency generator was built and used for testing of several new ideas, such as transmitting the data using several carrier frequencies at the same time, transmitting the data with different wave forms (sine, sawtooth, triangle and rectangle), or transmitting the data using the chirp modulation. The innovative design of the experimental multi-frequency generator was registered at the German Patent and Trade Mark Office for patents in 2016. At the receiver end, two different methods for processing and analyzing the received multi-frequency signals using the Wavelet and Fourier analysis were drafted and tested. A novel concept for the use of a multi-sensor receiver was developed and successfully tested. The use of a multi-sensor receiver could strongly improve the detection of the received signals.:Table of Contents Declaration ii Abstract iii Acknowledgements v Table of Contents vi List of Abbreviations x List of Symbols xii CHAPTER 1 Introduction 1 CHAPTER 2 Modern Drilling Technology and Low Data Transmission Rate as a Limitation 5 2.1 Introduction to the modern drilling technology 5 2.1.1 Directional drilling technology 5 2.1.2 Steering technology 6 2.1.3 Measuring technology 8 2.1.4 Technology of data transmission in boreholes 9 2.2 Low data transmission rate as a problem with respect to the whole drilling process 13 CHAPTER 3 Fundamentals of Communication Technology 16 3.1 Modulation techniques for data transmission in baseband 16 3.2 Modulation techniques for data transmission in passband 17 3.3 Multiple frequency and chirp spread spectrum modulation techniques 19 3.4 Digital signal processing 21 3.4.1 Fourier transformation 21 3.4.2 Continuous wavelet transformation 23 3.4.3 Filtering 24 CHAPTER 4 State of the Art for Mud Pulse Telemetry Systems 26 4.1 Historical development of mud pulse telemetry including latest improvements applied for increasing its data transmission rate 26 4.2 Available types of mud pulse telemetry devices 30 4.2.1 Negative pulser 31 4.2.2 Positive pulser 32 4.2.3 Mud siren 32 4.2.4 Oscillating shear valve 33 4.3 Limitations of data transmission via mud pulse telemetry 34 4.3.1 Effect of noise sources in the mud channel on the transmission signal 34 4.3.2 Effect of attenuation in the mud channel on the transmission signal 36 4.3.3 Effect of reflections and their interference with the main transmission signal 37 4.3.4 Pass and stop bands 38 4.4.5 Minimum transmission time slot 38 CHAPTER 5 Novel Concepts and Tools for Increased Data Transmission Rates of Mud Pulse Telemetry 40 5.1 Transmitter end 41 5.1.1 Hybrid mud pulse telemetry (HMPT) 41 5.1.2 Multi-frequency generator 43 5.2 Receiver end 45 5.2.1 Investigation of the Wavelet analysis suitability for multi-frequency signal detection 45 5.2.2 Flexible placement of multi-sensor receiver 46 CHAPTER 6 Laboratory Test Facility and Used Hard and Soft Tools 49 6.1 Laboratory test facility for hydraulic data transmission in boreholes 49 6.2 Experimental prototypes of the pressure pulsers and mud siren 53 6.3 3D numerical simulation model for the test facility and mud siren 55 6.4 MATLAB software 58 CHAPTER 7 Hybrid Mud Pulse Telemetry (HMPT) System 59 7.1 Combination of mud siren and negative pressure pulser 60 7.2 Combination of mud siren and positive pressure pulser 63 7.3 Evaluating the laboratory investigations of the hybrid mud pulse telemetry (HMPT) system 66 CHAPTER 8 Mathematical and Numerical Investigation of the Concept of the Multi-Frequency Mud Siren 68 8.1 Preliminary considerations for the concept of the multi-frequency mud siren 69 8.2 Mathematical model investigation of different approaches for the multi-frequency mud siren concept 71 8.2.1 Multi-frequency mud siren with stators and rotors in a row 72 8.2.2 Multi-frequency mud siren with parallel connection of stators and rotors 74 8.3 Numerical model investigation of multi-frequency mud siren with two sets of stator/rotor in a row 77 8.3.1 Numerical simulations for data transmission with a multi-frequency mud siren using two carrier frequencies 79 8.3.2 Evaluation of the simulation results 81 8.3.3 Increasing the transmission reach of the mud siren for deep drilling operations 83 CHAPTER 9 Laboratory Investigations of Multi-Carrier Hydraulic Data Transmission Using an Experimental Multi-Frequency Generator 85 9.1 Laboratory multi-carrier frequency transmission tests 87 9.2 Investigation of the Wavelet analysis suitability for the detection of multi-frequency signal transmitted in boreholes 95 9.3 Initial investigations of hydraulic data transmission using chirp modulation and different pressure wave forms 100 9.3.1 Data transmission using chirp modulation (Chirp Spread Spectrum, CSS) 100 9.3.2 Data transmission using different wave forms 101 CHAPTER 10 Investigation of the Use of a Multi-Sensor Receiver for Improving the Hydraulic Data Transmission in Boreholes 104 10.1 Numerical model investigation of the use of a multi-sensor receiver 104 10.1.1 Data transmission using single-input and multiple-output (SIMO) 104 10.1.2 Data transmission using multiple-input and multiple-output (MIMO) 107 10.2 Laboratory investigations of the use of a multi-sensor receiver 108 10.3 Evaluating the use of a multi-sensor receiver for improving the hydraulic data transmission in boreholes 112 CHAPTER 11 Conclusion and Outlook 116 11.1 Conclusion 116 11.2 Outlook 120 References 122 List of Figures 129 List of Tables 136 List of Publications 137 List of Patents 138 Appendix- Chapter 7 139 Appendix- Chapter 8 141 Appendix- Chapter 9 142 Appendix- Chapter 10 146

Page generated in 0.0674 seconds