• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 12
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 16
  • 14
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Comparison of Synchronized Flow with Classical Flow in Multi-Stage Production Systems

Tang, Haibin January 2009 (has links)
No description available.
42

A study of multi-stage sludge digestion systems

Kim, Jong Min 20 August 2010 (has links)
Various combinations of multi-stage thermophilic and/or mesophilic anaerobic sludge digestion systems were studied to evaluate their solids reduction, odor generation after centrifugal dewatering and indicator organism reduction in comparison to single-stage thermophilic and/or mesophilic anaerobic digestion systems. Pre-aeration of sludge in a thermophilic temperature was also tested followed by single or multi-stage anaerobic digestion systems. It was found that multi stage systems were capable of greater solids removal and placing thermophilic system in multi stage system enhanced indicator organism destruction below EPA Class A biosolids requirement. However, all the digestion systems in the study showed less than 3 log reduction of indicator organism DNA/g solids, which was much smaller than indicator organism reduction measured by standard culturing method. It was also found that the thermophilic anaerobic digestion system could increase organic sulfur-based odors from dewatered biosolids while placing a mesophilic digester reduced odors. It was exclusively observed from sludges containing high sulfate such as ones in this study. A combined anaerobic and aerobic sludge digestion system was also studied to evaluate their solids and nitrogen reduction efficiencies. The aerobic digester was continuously aerated to maintain dissolved oxygen level below 1 ppm and intermittently aerated. It was found that 90 % or more nitrogen removal was possible at the aerobic SRT greater than 3 days and the optimum aeration ratio could be determined. / Ph. D.
43

Economic removal of chlorophenol from wastewater using multi-stage spiral-wound reverse osmosis process: simulation and optimisation

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 25 April 2019 (has links)
Yes / The successful use of Reverse Osmosis (RO) process has increased significantly in water desalination, water treatment and food processing applications. In this work, the economic feasibility of a multi-stage RO process including both retentate and permeate reprocessing for the removal of chlorophenol from wastewater is explored using simulation and optimisation studies. Firstly, a mathematical model of the process is developed based on the solution diffusion model, which was validated using experimental chlorophenol removal from the literature, is combined with several appropriate cost functions to form a full model package. Secondly, for a better understanding of the interactions between the different parameters on the economic performance of the process, a detailed process simulation is carried out. Finally, a multi-objective optimisation framework based on Non-Linear Programming (NLP) problem is developed for minimising the product unit cost, the total annualised cost, the specific energy consumption together with optimising the feed pressure and feed flow rate for an acceptable level of chlorophenol rejection and total water recovery rate. The results clearly show that the removal of chlorophenol can reach 98.8% at a cost of approximately 0.21 $/m³.
44

Optimum design of a multi-stage reverse osmosis process for the production of highly concentrated apple juice

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 20 June 2017 (has links)
Yes / Reverse Osmosis (RO) membrane process has been commonly used for clarification and concentration of apple juice processes, due to significant advance in membrane technology, requirements for low energy and cost, and effective retention of aroma components. In this paper, a multi-stage RO industrial full-scale plant based on the MSCB 2521 RE99 spiral-wound membrane module has been used to simulate the process of concentrating apple juice and to identify an optimal multi-stage RO process for a specified apple juice product of high concentration measured in Brix. The optimisation problem is formulated as a Nonlinear Programming (NLP) problem with five different RO superstructures to maximise the apple juice concentration as well as the operating parameters such as feed pressure, flow rate and temperature are optimised. A simple lumped parameter model based on the solution-diffusion model and the contribution of all sugar species (sucrose, glucose, malic acid, fructose and sorbitol) to the osmotic pressure is assumed to represent the process. The study revealed that the multi-stage series RO process can optimise the product concentration of apple juice better than other configurations. It has been concluded that the series configuration of twelve elements of 1.03 m2 area improves the product apple juice concentration by about 142% compared to one element. Furthermore, the feed pressure and flow rate were found to have a significant impact on the concentration of the apple juice.
45

Sequential investments with stage-specific risks and drifts

Adkins, Roger, Paxson, D. 04 April 2016 (has links)
Yes / We provide a generalized analytical methodology for evaluating a real sequential investment opportunity, which does not rely on a multivariate distribution function, but which allows for stage-specific risks and drifts. This model may be a useful capital budgeting and valuation tool for exploration and development projects, where risks change over the stages. We construct a stage threshold pattern whereby the final stage threshold exceeds the early stage threshold due to drift differentials between the project values at the various stages, value volatility differences, and correlation differentials, implying a rich menu of parameter values that may be suitable for a variety of projects. Governments seeking to motivate early final stage investments might lower final stage project volatility or specify project value decline over time, unless prospective owners are willing to pay the real option value (ROV) for concessions. In contrast, concession owners, more interested in ROV than thresholds that motivate early investments, may welcome final stage value escalation, or guarantees that reduce the correlation between project value and construction cost.
46

Latent Dirichlet Allocation for the Detection of Multi-Stage Attacks

Lefoane, Moemedi, Ghafir, Ibrahim, Kabir, Sohag, Awan, Irfan U. 19 December 2023 (has links)
No / The rapid shift and increase in remote access to organisation resources have led to a significant increase in the number of attack vectors and attack surfaces, which in turn has motivated the development of newer and more sophisticated cyber-attacks. Such attacks include Multi-Stage Attacks (MSAs). In MSAs, the attack is executed through several stages. Classifying malicious traffic into stages to get more information about the attack life-cycle becomes a challenge. This paper proposes a malicious traffic clustering approach based on Latent Dirichlet Allocation (LDA). LDA is a topic modelling approach used in natural language processing to address similar problems. The proposed approach is unsupervised learning and therefore will be beneficial in scenarios where traffic data is not labeled and analysis needs to be performed. The proposed approach uncovers intrinsic contexts that relate to different categories of attack stages in MSAs. These are vital insights needed across different areas of cybersecurity teams like Incident Response (IR) within the Security Operations Center (SOC), the insights uncovered could have a positive impact in ensuring that attacks are detected at early stages in MSAs. Besides, for IR, these insights help to understand the attack behavioural patterns and lead to reduced time in recovery following an incident. The proposed approach is evaluated on a publicly available MSAs dataset. The performance results are promising as evidenced by over 99% accuracy in identified malicious traffic clusters.
47

Simulation and optimisation of a two-stage/two-pass reverse osmosis system for improved removal of chlorophenol from wastewater

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 03 February 2018 (has links)
Yes / Reverse osmosis (RO) has become a common method for treating wastewater and removing several harmful organic compounds because of its relative ease of use and reduced costs. Chlorophenol is a toxic compound for humans and can readily be found in the wastewater of a wide range of industries. Previous research in this area of work has already provided promising results in respect of the performance of an individual spiral wound RO process for removing chlorophenol from wastewater, but the associated removal rates have stayed stubbornly low. The literature has so far confirmed that the efficiency of eliminating chlorophenol from wastewater using a pilot-scale of an individual spiral wound RO process is around 83 %, compared to 97 % for dimethylphenol. This paper explores the potential of an alternative configuration of two-stage/two-pass RO process for improving such low chlorophenol rejection rates via simulation and optimisation. The operational optimisation carried out is enhanced by constraining the total recovery rate to a realistic value by varying the system operating parameters according to the allowable limits of the process. The results indicate that the proposed configuration has the potential to increase the rejection of chlorophenol by 12.4 % while achieving 40 % total water recovery at an energy consumption of 1.949 kWh/m³.
48

Performance evaluation of multi-stage and multi-pass reverse osmosis networks for the removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater using model-based techniques

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 06 June 2018 (has links)
Yes / The removal of pollutants such as N-nitrosamine present in drinking and reuse water resources is of significant interest for health and safety professionals. Reverse osmosis (RO) is one of the most promising and efficient methodologies for removing such harmful organic compounds from wastewater. Having said this, the literature confirms that the multi-stage RO process with retentate reprocessing design has not yet achieved an effective removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater. This research emphasizes on this particular challenge and aims to explore several conceptual designs of multi-stage RO processes for NDMA rejection considering model-based techniques and compute the total recovery rate and energy consumption for different configurations of retentate reprocessing techniques. In this research, the permeate reprocessing design methodology is proposed to increase the process efficiency. An extensive simulation analysis is carried out using high NDMA concentration to evaluate the performance of each configuration under similar operational conditions, thus providing a deep insight on the performance of the multi-stage RO permeate reprocessing predictive design. Furthermore, an optimisation analysis is carried out on the final design to optimise the process with a high NDMA rejection performance and the practical recovery rate by manipulating the operating conditions of the plant within specified constraints bounds. The results show a superior removal of NDMA from wastewater.
49

Performance evaluation of multi-stage reverse osmosis process with permeate and retentate recycling strategy for the removal of chlorophenol from wastewater

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 11 October 2018 (has links)
Yes / Reverse Osmosis (RO) is one of the most widely used technologies for wastewater treatment for the removal of toxic impurities, such as phenol and phenolic compounds from industrial effluents. In this research, performance of multi-stage RO wastewater treatment system is evaluated for the removal of chlorophenol from wastewater using model-based techniques. A number of alternative configurations with recycling of permeate, retentate, and permeate-retentate streams are considered. The performance is measured in terms of total recovery rate, permeate product concentration, overall chlorophenol rejection and energy consumption and the effect of a number of operating parameters on the overall performance of the alternative configurations are evaluated. The results clearly show that the permeate recycling scheme at fixed plant feed flow rate can remarkably improve the final chlorophenol concentration of the product despite a reduction in the total recovery rate.
50

Utilisation d'un fermenteur continu multi-étagé pour la compréhension des mécanismes d'adaptation de la levure à des ajouts d'azote en conditions oenologiques / Use a multi-stage fermentation device to understand the yeasts adaptation mechanisms to nitrogen supplementation in winemaking conditions

Clement, Tiphaine 28 September 2012 (has links)
Nous avons mis au point un fermenteur continu multi-étagé (MSCF) dans le but de reproduire les conditions de la fermentation alcoolique en conditions œnologiques. Ce bioréacteur permet de maintenir les levures dans un milieu stable et contrôlé tout en découplant la croissance et la phase stationnaire. Le système offre donc la possibilité d'obtenir des levures non croissantes dans un milieu de composition stable. Dans un premier temps, nous avons validé la pertinence du MSCF pour reproduire les conditions de fermentation du batch, par approche intégrée (des paramètres cinétiques, des métabolites intra et exo cellulaire et de l'expression génique). Nous avons ensuite utilisé ce bioréacteur pour étudier les mécanismes d'adaptation métabolique des microorganismes suite à un ajout d'azote, pratique largement répandue en œnologie. Plusieurs résultats originaux ont été obtenus concernant, notamment, la réorganisation du cycle TCA, le transport des sources azotées et la synthèse des alcools supérieurs et esters. La fiabilité de l'outil mis au point et l'originalité des données obtenues ouvrent des perspectives à l'utilisation du MSCF pour la compréhension du métabolisme et des mécanismes d'adaptation des levures. / We set up a multi-stage continuous fermentor (MSCF) to mimic the conditions of alcoholic fermentation. In this bioreactor, the yeasts are in a steady and well controlled state representative of the growth and stationary phases of the batch. The ability of the MSCF to reproduce batch fermentation was assessed using an integrated approach (measurement of kinetic parameters, intra and exo-cellular metabolites and gene expression). We then used the MSCF to study the impact of nitrogen supplementation performed during the stationary phase, on yeasts metabolism. Several original results were obtained, concerning the TCA cycle, the transport of nitrogenous sources and the synthesis of higher alcohols and esters. This work points out the interest of using the MSCF to assess the effect of medium perturbations during alcoholic fermentation, especially during the stationary phase. More generally, the accuracy of the MSCF and the originality of the data obtained open new prospects for a better understanding of yeasts metabolism and regulation mechanisms.

Page generated in 0.1101 seconds