• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 7
  • 4
  • Tagged with
  • 58
  • 58
  • 36
  • 32
  • 28
  • 17
  • 17
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Minimizing Regret in Combinatorial Bandits and Reinforcement Learning

Talebi Mazraeh Shahi, Mohammad Sadegh January 2017 (has links)
This thesis investigates sequential decision making tasks that fall in the framework of reinforcement learning (RL). These tasks involve a decision maker repeatedly interacting with an environment modeled by an unknown finite Markov decision process (MDP), who wishes to maximize a notion of reward accumulated during her experience. Her performance can be measured through the notion of regret, which compares her accumulated expected reward against that achieved by an oracle algorithm always following an optimal behavior. In order to maximize her accumulated reward, or equivalently to minimize the regret, she needs to face a trade-off between exploration and exploitation. The first part of this thesis investigates combinatorial multi-armed bandit (MAB) problems, which are RL problems whose state-space is a singleton. It also addresses some applications that can be cast as combinatorial MAB problems. The number of arms in such problems generically grows exponentially with the number of basic actions, but the rewards of various arms are correlated. Hence, the challenge in such problems is to exploit the underlying combinatorial structure.For these problems, we derive asymptotic (i.e., when the time horizon grows large) lower bounds on the regret of any admissible algorithm and investigate how these bounds scale with the dimension of the underlying combinatorial structure. We then propose several algorithms and provide finite-time analyses of their regret. The proposed algorithms efficiently exploit the structure of the problem, provide better performance guarantees than existing algorithms, and significantly outperform these algorithms in practice. The second part of the thesis concerns RL in an unknown and discrete MDP under the average-reward criterion. We develop some variations of the transportation lemma that could serve as novel tools for the regret analysis of RL algorithms. Revisiting existing regret lower bounds allows us to derive alternative bounds, which motivate that the local variance of the bias function of the MDP, i.e., the variance with respect to next-state transition laws, could serve as a notion of problem complexity for regret minimization in RL. Leveraging these tools also allows us to report a novel regret analysis of the KL-UCRL algorithm for ergodic MDPs. The leading term in our regret bound depends on the local variance of the bias function, thus coinciding with observations obtained from our presented lower bounds. Numerical evaluations in some benchmark MDPs indicate that the leading term of the derived bound can provide an order of magnitude improvement over previously known results for this algorithm. / <p>QC 20171215</p>
12

Decision making using Thompson Sampling

Mellor, Joseph Charles January 2014 (has links)
The ability to make decisions is a crucial ability of many autonomous systems. In many scenarios the consequence of a decision is unknown and often stochastic. The same decision may lead to a different outcome every time it is taken. An agent that can learn to make decisions based purely on its past experience needs less tuning and is likely more robust. An agent must often balance between learning the payoff of actions by exploring, and exploiting the knowledge they currently have. The multi-armed bandit problem exhibits such an exploration-exploitation dilemma. Thompson Sampling is a strategy for the problem, first proposed in 1933. In the last several years there has been renewed interest in it, with the emergence of strong empirical and theoretical justification for its use. This thesis seeks to take advantage of the benefits of Thompson Sampling while applying it to other decision-making models. In doing so we propose different algorithms for these scenarios. Firstly we explore a switching multi-armed bandit problem. In real applications the most appropriate decision to take often changes over time. We show that an agent assuming switching is often robust to many types of changing environment. Secondly we consider the best arm identification problem. Unlike the multi-armed bandit problem, where an agent wants to increase reward over the entire period of decision making, the best arm identification is concerned in increasing the reward gained by a final decision. This thesis argues that both problems can be tackled effectively using Thompson Sampling based approaches and provides empirical evidence to support this claim.
13

Bandits Manchots sur Flux de Données Non Stationnaires / Multi-armed Bandits on non Stationary Data Streams

Allesiardo, Robin 19 October 2016 (has links)
Le problème des bandits manchots est un cadre théorique permettant d'étudier le compromis entre exploration et exploitation lorsque l'information observée est partielle. Dans celui-ci, un joueur dispose d'un ensemble de K bras (ou actions), chacun associé à une distribution de récompenses D(µk) de moyenne µk Є [0, 1] et de support [0, 1]. A chaque tour t Є [1, T], il choisit un bras kt et observe la récompense y kt tirée depuis D (µkt). La difficulté du problème vient du fait que le joueur observe uniquement la récompense associée au bras joué; il ne connaît pas celle qui aurait pu être obtenue en jouant un autre bras. À chaque choix, il est ainsi confronté au dilemme entre l'exploration et l'exploitation; explorer lui permet d'affiner sa connaissance des distributions associées aux bras explorés tandis qu'exploiter lui permet d'accumuler davantage de récompenses en jouant le meilleur bras empirique (sous réserve que le meilleur bras empirique soit effectivement le meilleur bras). Dans la première partie de la thèse nous aborderons le problème des bandits manchots lorsque les distributions générant les récompenses sont non-stationnaires. Nous étudierons dans un premier temps le cas où même si les distributions varient au cours du temps, le meilleur bras ne change pas. Nous étudierons ensuite le cas où le meilleur bras peut aussi changer au cours du temps. La seconde partie est consacrée aux algorithmes de bandits contextuels où les récompenses dépendent de l'état de l'environnement. Nous étudierons l'utilisation des réseaux de neurones et des forêts d'arbres dans le cas des bandits contextuels puis les différentes approches à base de méta-bandits permettant de sélectionner en ligne l'expert le plus performant durant son apprentissage. / The multi-armed bandit is a framework allowing the study of the trade-off between exploration and exploitation under partial feedback. At each turn t Є [1,T] of the game, a player has to choose an arm kt in a set of K and receives a reward ykt drawn from a reward distribution D(µkt) of mean µkt and support [0,1]. This is a challeging problem as the player only knows the reward associated with the played arm and does not know what would be the reward if she had played another arm. Before each play, she is confronted to the dilemma between exploration and exploitation; exploring allows to increase the confidence of the reward estimators and exploiting allows to increase the cumulative reward by playing the empirical best arm (under the assumption that the empirical best arm is indeed the actual best arm).In the first part of the thesis, we will tackle the multi-armed bandit problem when reward distributions are non-stationary. Firstly, we will study the case where, even if reward distributions change during the game, the best arm stays the same. Secondly, we will study the case where the best arm changes during the game. The second part of the thesis tacles the contextual bandit problem where means of reward distributions are now dependent of the environment's current state. We will study the use of neural networks and random forests in the case of contextual bandits. We will then propose meta-bandit based approach for selecting online the most performant expert during its learning.
14

Hyperparameter Tuning for Reinforcement Learning with Bandits and Off-Policy Sampling

Hauser, Kristen 21 June 2021 (has links)
No description available.
15

A Recommender System for Suggested Sites using Multi-Armed Bandits : Initialising Bandit Contexts by Neural Collaborative Filtering / Ett rekommendationssystem för länkförslag byggt på flerarmade banditer

Stenberg, William January 2021 (has links)
The abundance of information available on the internet necessitates means of quickly finding what is relevant for the individual user. To this end, there has been much research concerning recommender systems and lately specifically methods using deep learning for such systems. This work proposes a Multi-Armed Bandit as a recommender for suggested sites on a browser start page. The system is compared to a pre-existing baseline and does not manage to outperform it in the setting used in controlled experiments. A Neural Collaborative Filtering system is then constructed using a stacked autoencoder and is used to produce user preference vectors that are inserted in the bandit in the hope of improving its performance. Analysis indicates that the bandit solution works better as the number of items grows. The user-informed initialisation used in this work shows a trend of improving over a randomly-initialised bandit, but results are inconclusive. This work also contributes an analysis of the problem domain including which factors impact the performance on the model training for preference vectors, and the performance of the bandit algorithms.
16

Intelligent Data Mining Techniques for Automatic Service Management

Wang, Qing 07 November 2018 (has links)
Today, as more and more industries are involved in the artificial intelligence era, all business enterprises constantly explore innovative ways to expand their outreach and fulfill the high requirements from customers, with the purpose of gaining a competitive advantage in the marketplace. However, the success of a business highly relies on its IT service. Value-creating activities of a business cannot be accomplished without solid and continuous delivery of IT services especially in the increasingly intricate and specialized world. Driven by both the growing complexity of IT environments and rapidly changing business needs, service providers are urgently seeking intelligent data mining and machine learning techniques to build a cognitive ``brain" in IT service management, capable of automatically understanding, reasoning and learning from operational data collected from human engineers and virtual engineers during the IT service maintenance. The ultimate goal of IT service management optimization is to maximize the automation of IT routine procedures such as problem detection, determination, and resolution. However, to fully automate the entire IT routine procedure is still a challenging task without any human intervention. In the real IT system, both the step-wise resolution descriptions and scripted resolutions are often logged with their corresponding problematic incidents, which typically contain abundant valuable human domain knowledge. Hence, modeling, gathering and utilizing the domain knowledge from IT system maintenance logs act as an extremely crucial role in IT service management optimization. To optimize the IT service management from the perspective of intelligent data mining techniques, three research directions are identified and considered to be greatly helpful for automatic service management: (1) efficiently extract and organize the domain knowledge from IT system maintenance logs; (2) online collect and update the existing domain knowledge by interactively recommending the possible resolutions; (3) automatically discover the latent relation among scripted resolutions and intelligently suggest proper scripted resolutions for IT problems. My dissertation addresses these challenges mentioned above by designing and implementing a set of intelligent data-driven solutions including (1) constructing the domain knowledge base for problem resolution inference; (2) online recommending resolution in light of the explicit hierarchical resolution categories provided by domain experts; and (3) interactively recommending resolution with the latent resolution relations learned through a collaborative filtering model.
17

Efficient Online Learning with Bandit Feedback

Liu, Fang 29 September 2020 (has links)
No description available.
18

Online Combinatorial Optimization under Bandit Feedback

Talebi Mazraeh Shahi, Mohammad Sadegh January 2016 (has links)
Multi-Armed Bandits (MAB) constitute the most fundamental model for sequential decision making problems with an exploration vs. exploitation trade-off. In such problems, the decision maker selects an arm in each round and observes a realization of the corresponding unknown reward distribution. Each decision is based on past decisions and observed rewards. The objective is to maximize the expected cumulative reward over some time horizon by balancing exploitation (arms with higher observed rewards should be selectedoften) and exploration (all arms should be explored to learn their average rewards). Equivalently, the performanceof a decision rule or algorithm can be measured through its expected regret, defined as the gap betweenthe expected reward achieved by the algorithm and that achieved by an oracle algorithm always selecting the bestarm. This thesis investigates stochastic and adversarial combinatorial MAB problems, where each arm is a collection of several basic actions taken from a set of $d$ elements, in a way that the set of arms has a certain combinatorial structure. Examples of such sets include the set of fixed-size subsets, matchings, spanning trees, paths, etc. These problems are specific forms of online linear optimization, where the decision space is a subset of $d$-dimensional hypercube.Due to the combinatorial nature, the number of arms generically grows exponentially with $d$. Hence, treating arms as independent and applying classical sequential arm selection policies would yield a prohibitive regret. It may then be crucial to exploit the combinatorial structure of the problem to design efficient arm selection algorithms.As the first contribution of this thesis, in Chapter 3 we investigate combinatorial MABs in the stochastic setting and with Bernoulli rewards. We derive asymptotic (i.e., when the time horizon grows large) lower bounds on the regret of any algorithm under bandit and semi-bandit feedback. The proposed lower bounds are problem-specific and tight in the sense that there exists an algorithm that achieves these regret bounds. Our derivation leverages some theoretical results in adaptive control of Markov chains. Under semi-bandit feedback, we further discuss the scaling of the proposed lower bound with the dimension of the underlying combinatorial structure. For the case of semi-bandit feedback, we propose ESCB, an algorithm that efficiently exploits the structure of the problem and provide a finite-time analysis of its regret. ESCB has better performance guarantees than existing algorithms, and significantly outperforms these algorithms in practice. In the fourth chapter, we consider stochastic combinatorial MAB problems where the underlying combinatorial structure is a matroid. Specializing the results of Chapter 3 to matroids, we provide explicit regret lower bounds for this class of problems. For the case of semi-bandit feedback, we propose KL-OSM, a computationally efficient greedy-based algorithm that exploits the matroid structure. Through a finite-time analysis, we prove that the regret upper bound of KL-OSM matches the proposed lower bound, thus making it the first asymptotically optimal algorithm for this class of problems. Numerical experiments validate that KL-OSM outperforms state-of-the-art algorithms in practice, as well.In the fifth chapter, we investigate the online shortest-path routing problem which is an instance of combinatorial MABs with geometric rewards. We consider and compare three different types of online routing policies, depending (i) on where routing decisions are taken (at the source or at each node), and (ii) on the received feedback (semi-bandit or bandit). For each case, we derive the asymptotic regret lower bound. These bounds help us to understand the performance improvements we can expect when (i) taking routing decisions at each hop rather than at the source only, and (ii) observing per-link delays rather than end-to-end path delays. In particular, we show that (i) is of no use while (ii) can have a spectacular impact.For source routing under semi-bandit feedback, we then propose two algorithms with a trade-off betweencomputational complexity and performance. The regret upper bounds of these algorithms improve over those ofthe existing algorithms, and they significantly outperform state-of-the-art algorithms in numerical experiments. Finally, we discuss combinatorial MABs in the adversarial setting and under bandit feedback. We concentrate on the case where arms have the same number of basic actions but are otherwise arbitrary. We propose CombEXP, an algorithm that has the same regret scaling as state-of-the-art algorithms. Furthermore, we show that CombEXP admits lower computational complexity for some combinatorial problems. / <p>QC 20160201</p>
19

CONTENT TRADING AND PRIVACY-AWARE PRICING FOR EFFICIENT SPECTRUM UTILIZATION

Alotaibi, Faisal F. January 2019 (has links)
No description available.
20

New Methods for Learning from Heterogeneous and Strategic Agents

Divya, Padmanabhan January 2017 (has links) (PDF)
1 Introduction In this doctoral thesis, we address several representative problems that arise in the context of learning from multiple heterogeneous agents. These problems are relevant to many modern applications such as crowdsourcing and internet advertising. In scenarios such as crowdsourcing, there is a planner who is interested in learning a task and a set of noisy agents provide the training data for this learning task. Any learning algorithm making use of the data provided by these noisy agents must account for their noise levels. The noise levels of the agents are unknown to the planner, leading to a non-trivial difficulty. Further, the agents are heterogeneous as they differ in terms of their noise levels. A key challenge in such settings is to learn the noise levels of the agents while simultaneously learning the underlying model. Another challenge arises when the agents are strategic. For example, when the agents are required to perform a task, they could be strategic on the efforts they put in. As another example, when required to report their costs incurred towards performing the task, the agents could be strategic and may not report the costs truthfully. In general, the performance of the learning algorithms could be severely affected if the information elicited from the agents is incorrect. We address the above challenges that arise in the following representative learning problems. Multi-label Classification from Heterogeneous Noisy Agents Multi-label classification is a well-known supervised machine learning problem where each instance is associated with multiple classes. Since several labels can be assigned to a single instance, one of the key challenges in this problem is to learn the correlations between the classes. We first assume labels from a perfect source and propose a novel topic model called Multi-Label Presence-Absence Latent Dirichlet Allocation (ML-PA-LDA). In the current day scenario, a natural source for procuring the training dataset is through mining user-generated content or directly through users in a crowdsourcing platform. In the more practical scenario of crowdsourcing, an additional challenge arises as the labels of the training instances are provided by noisy, heterogeneous crowd-workers with unknown qualities. With this as the motivation, we further adapt our topic model to the scenario where the labels are provided by multiple noisy sources and refer to this model as ML-PA-LDA-MNS (ML-PA-LDA with Multiple Noisy Sources). With experiments on standard datasets, we show that the proposed models achieve superior performance over existing methods. Active Linear Regression with Heterogeneous, Noisy and Strategic Agents In this work, we study the problem of training a linear regression model by procuring labels from multiple noisy agents or crowd annotators, under a budget constraint. We propose a Bayesian model for linear regression from multiple noisy sources and use variational inference for parameter estimation. When labels are sought from agents, it is important to minimize the number of labels procured as every call to an agent incurs a cost. Towards this, we adopt an active learning approach. In this specific context, we prove the equivalence of well-studied criteria of active learning such as entropy minimization and expected error reduction. For the purpose of annotator selection in active learning, we observe a useful connection with the multi-armed bandit framework. Due to the nature of the distribution of the rewards on the arms, we resort to the Robust Upper Confidence Bound (UCB) scheme with truncated empirical mean estimator to solve the annotator selection problem. This yields provable guarantees on the regret. We apply our model to the scenario where annotators are strategic and design suitable incentives to induce them to put in their best efforts. Ranking with Heterogeneous Strategic Agents We look at the problem where a planner must rank multiple strategic agents, a problem that has many applications including sponsored search auctions (SSA). Stochastic multi-armed bandit (MAB) mechanisms have been used in the literature to solve this problem. Existing stochastic MAB mechanisms with a deterministic payment rule, proposed in the literature, necessarily suffer a regret of (T 2=3), where T is the number of time steps. This happens because these mechanisms address the worst case scenario where the means of the agents’ stochastic rewards are separated by a very small amount that depends on T . We however take a detour and allow the planner to indicate the resolution, , with which the agents must be distinguished. This immediately leads us to introduce the notion of -Regret. We propose a dominant strategy incentive compatible (DSIC) and individually rational (IR), deterministic MAB mechanism, based on ideas from the Upper Confidence Bound (UCB) family of MAB algorithms. The proposed mechanism - UCB achieves a -regret of O(log T ). We first establish the results for single slot SSA and then non-trivially extend the results to the case of multi-slot SSA.

Page generated in 0.0534 seconds