• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 87
  • 58
  • 22
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 594
  • 594
  • 426
  • 136
  • 109
  • 98
  • 93
  • 89
  • 75
  • 73
  • 68
  • 61
  • 60
  • 55
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Optimisation of hybrid MED-TVC and double reverse osmosis processes for producing different grades of water in a smart city

Al-hotmani, Omer M.A., Al-Obaidi, Mudhar A.A.R., John, Yakubu M., Patel, Rajnikant, Mujtaba, Iqbal M. 07 April 2022 (has links)
Yes / The integration of two or more processes in a hybrid system is one of the most desirable options to provide flexibility, interoperability and data sharing between the connected processes. Various examples of hybrid systems have been developed with coherent seawater desalination systems such as the combination of thermal and membrane technologies. This paper focuses on the simulation and optimisation of an integrated (hybrid) system of multi effect distillation and double Reverse Osmosis (RO) processes to produce different grades of water needed in a smart city from seawater resources. The optimisation-based model investigates five scenarios to obtain the highest productivity of drinking water, irrigation water, water for livestock and power plant water, whilst constraining the product water salinity to be within the required standards and with lowest specific energy consumption. For this purpose, multi objective optimisation problem was formulated using the gPROMS (general Process Modelling System) software. The results confirm the superiority of the developed hybrid system to sustain different grades of water in a smart city.
192

Virtual Modeling and Optimization of an Organic Rankine Cycle

Chandrasekaran, Vetrivel January 2014 (has links)
No description available.
193

Temporal Clustering of Finite Metric Spaces and Spectral k-Clustering

Rossi, Alfred Vincent, III 30 October 2017 (has links)
No description available.
194

THERMAL-ECONOMIC OPTIMIZATION AND STRUCTURAL EVALUATION FOR AN ADVANCED INTERMEDIATE HEAT EXCHANGER DESIGN

Zhang, Xiaoqin 25 October 2016 (has links)
No description available.
195

Weight and Cost Multi-Objective Optimization of Hybrid Composite Sandwich Structures

Salem, Adel I. January 2016 (has links)
No description available.
196

Multi-Modal Smart Traffic Signal Control Using Connected Vehicles

Rajvanshi, Kshitij January 2016 (has links)
No description available.
197

Development of a graphical decision aid for evaluation of multi-objective schedules in a job shop environment

Deshpande, Abhijit A. January 1989 (has links)
No description available.
198

Bayesian Multi-objective Design of Reliability Testing

Ramadan, Saleem Z. 25 April 2011 (has links)
No description available.
199

An Adaptive Dual-Optimal Path-Planning Technique for Unmanned Air Vehicles with Application to Solar-Regenerative High Altitude Long Endurance Flight

Whitfield, Clifford A. 22 July 2009 (has links)
No description available.
200

REINFORCEMENT LEARNING FOR CONCAVE OBJECTIVES AND CONVEX CONSTRAINTS

Mridul Agarwal (13171941) 29 July 2022 (has links)
<p> </p> <p>Formulating RL with MDPs work typically works for a single objective, and hence, they are not readily applicable where the policies need to optimize multiple objectives or to satisfy certain constraints while maximizing one or multiple objectives, which can often be conflicting. Further, many applications such as robotics or autonomous driving do not allow for violating constraints even during the training process. Currently, existing algorithms do not simultaneously combine multiple objectives and zero-constraint violations, sample efficiency, and computational complexity. To this end, we study sample efficient Reinforcement Learning with concave objective and convex constraints, where an agent maximizes a concave, Lipschitz continuous function of multiple objectives while satisfying a convex cost objective. For this setup, we provide a posterior sampling algorithm which works with a convex optimization problem to solve for the stationary distribution of the states and actions. Further, using our Bellman error based analysis, we show that the algorithm obtains a near-optimal Bayesian regret bound for the number of interaction with the environment. Moreover, with an assumption of existence of slack policies, we design an algorithm that solves for conservative policies which does not violate  constraints and still achieves the near-optimal regret bound. We also show that the algorithm performs significantly better than the existing algorithm for MDPs with finite states and finite actions.</p>

Page generated in 0.118 seconds