• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 87
  • 58
  • 22
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 597
  • 597
  • 429
  • 137
  • 110
  • 99
  • 94
  • 89
  • 76
  • 75
  • 69
  • 62
  • 60
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Decison Support System for Multi-Objective Multi-Asset Roadway Asset Management

Shoghli, Omidreza 12 August 2014 (has links)
The limited available budget along with old aging infrastructure in nation magnifies the role of strategic decision making for maintenance of infrastructure. The challenging objective is to maintain the infrastructure asset systems in a state of good repair and to improve the efficiency and performance of the infrastructure systems while protecting and enhancing the natural environment. Decision makers are in need of a decision support system to consider these multiple objectives and criteria to effectively allocate funding and achieve the highest possible return on investment on their infrastructure. The research proposes and validates a framework for such decisions. The proposed model aims at finding optimal techniques for maintenance of multiple roadway asset items while taking into account time, cost, level of service and environmental impacts. Therefore, the goal is to answer what are the optimal combinations of maintenance techniques for roadway assets while more than one objective is being optimized. In other words, the main objective is to develop a decision support system for selecting and prioritizing necessary actions for MRandR (Maintenance, Repair and Rehabilitation) of multiple asset items in order for a roadway to function within an acceptable level of service, budget, and time while considering environmental impacts. To achieve these desirable outcomes, this model creates a two-stage framework for a sustainable infrastructure asset management. First a multi-objective problem based on the multi colony ant colony optimization is analyzed. The objectives of the problem are: (i) Minimizing maintenance costs, (ii) Minimizing maintenance time, (iii) Minimizing environmental impacts and (iv) Maximizing level of service improvement. In the second stage, the results of the multi objective optimization will be prioritized using a Multi Criteria Decision Making (MCDM) process. The proposed approach will simultaneously optimize four conflicting objectives along with using a multi criteria decision-making technique for ranking the resulted non-dominated solutions of multi objective optimization. The results of implementation of the proposed model on a section of I-64 highway are presented for a sub-set of asset items. Moreover, the proposed model is validated using a scalable test problem as well as comparison with existing examples. Results reveal the capability of the model in generation of optimal solutions for the selection of maintenance strategies. The model optimizes decision making process and benefits decision makers by providing them with solutions for infrastructure asset management while meeting national goals towards sustainability and performance-based approach. In addition, provides a tool to run sensitivity analysis to evaluate annual budget effects and environmental impacts of different resource allocation scenarios. Application of the proposed approach is implemented on roadway asset items but it is not limited to roadways and is applicable to other infrastructure assets. / Ph. D.
22

Artificial intelligence and multiple criteria decision making approach for a cost-effective RFID-enabled tracking management system

Dukyil, Abdulsalam Saleh January 2018 (has links)
The implementation of RFID technology has been subject to ever-increasing popularity in relation to the traceability of items as one of the most advance technologies. Implementing such a technology leads to an increase in the visibility management of products. Notwithstanding this, RFID communication performance is potentially greatly affected by interference between the RFID devices. It is also subject to auxiliary costs in investment that should be considered. Hence, seeking a cost-effective design with a desired communication performance for RFID-enabled systems has become a key factor in order to be competitive in today‟s markets. This study introduce a cost and performance-effective design for a proposed RFID-enabled passport tracking system through the development of a multi-objective model that takes in account economic, operation and social criteria. The developed model is aimed at solving the design problem by (i) allocating the optimal numbers of related facilities that should be established and (ii) obtaining trade-offs among three objectives: minimising implementation and operational costs; minimising RFID reader interference; and maximising the social impact measured in the number of created jobs. To come closer to the actual design in terms of considering the uncertain parameters, a fuzzy multi-objective model was developed. To solve the multi-objective optimization problem model, two solution methods were used respectively (epsilon constrain and linear programming) to select the best Pareto solution and a decision-making method was developed to select the final trade-off solution. Moreover, this research aims to provide a user-friendly decision making tool for selecting the best vendor from a group which submitted their tenders for implementing a proposed RFID- based passport tracking system. In addition to that a real case study was applied to examine the applicability of the developed model and the proposed solution methods. The research findings indicate that the developed model is capable of presenting a design for an RFID- enabled passport tracking system. Also, the developed decision-making tool can easily be used to solve similar vendor selection problem. Research findings demonstrate that the proposed RFID-enabled monitoring system for the passport tracking system is economically feasible. The study concludes that the developed mathematical models and optimization approaches can be a useful decision-maker for tackling a number of design and optimization problems for RFID system using artificial intelligence mathematical algorithm based techniques.
23

Optimization-based mechanism synthesis using multi-objective parallel asynchronous particle swarm optimization

McDougall, Robin David 01 December 2008 (has links)
A distributed variant of multi-objective particle swarm optimization (MOPSO) called multi-objective parallel asynchronous particle swarm optimization (MOPAPSO) is presented, and the effects of distribution of objective function calculations to slave processors on the results and performance are investigated and employed for the synthesis of Grashof mechanisms. By using a formal multi-objective handling scheme based on Pareto dominance criteria, the need to pre-weight competing systemic objective functions is removed and the optimal solution for a design problem can be selected from a front of candidates after the parameter optimization has been completed. MOPAPSO's ability to match MOPSO's results using parallelization for improved performance is presented. Results for both four and ve bar mechanism synthesis examples are shown. / UOIT
24

Levenberg-Marquardt Algorithms for Nonlinear Equations, Multi-objective Optimization, and Complementarity Problems

Shukla, Pradyumn Kumar 09 March 2010 (has links) (PDF)
The Levenberg-Marquardt algorithm is a classical method for solving nonlinear systems of equations that can come from various applications in engineering and economics. Recently, Levenberg-Marquardt methods turned out to be a valuable principle for obtaining fast convergence to a solution of the nonlinear system if the classical nonsingularity assumption is replaced by a weaker error bound condition. In this way also problems with nonisolated solutions can be treated successfully. Such problems increasingly arise in engineering applications and in mathematical programming. In this thesis we use Levenberg-Marquardt algorithms to deal with nonlinear equations, multi-objective optimization and complementarity problems. We develop new algorithms for solving these problems and investigate their convergence properties. For sufficiently smooth nonlinear equations we provide convergence results for inexact Levenberg-Marquardt type algorithms. In particular, a sharp bound on the maximal level of inexactness that is sufficient for a quadratic (or a superlinear) rate of convergence is derived. Moreover, the theory developed is used to show quadratic convergence of a robust projected Levenberg-Marquardt algorithm. The use of Levenberg-Marquardt type algorithms for unconstrained multi-objective optimization problems is investigated in detail. In particular, two globally and locally quadratically convergent algorithms for these problems are developed. Moreover, assumptions under which the error bound condition for a Pareto-critical system is fulfilled are derived. We also treat nonsmooth equations arising from reformulating complementarity problems by means of NCP functions. For these reformulations, we show that existing smoothness conditions are not satisfied at degenerate solutions. Moreover, we derive new results for positively homogeneous functions. The latter results are used to show that appropriate weaker smoothness conditions (enabling a local Q-quadratic rate of convergence) hold for certain reformulations. / Der Levenberg-Marquardt-Algorithmus ist ein klassisches Verfahren zur Lösung von nichtlinearen Gleichungssystemen, welches in verschiedenen Anwendungen der Ingenieur-und Wirtschaftswissenschaften vorkommen kann. Kürzlich, erwies sich das Verfahren als ein wertvolles Instrument für die Gewährleistung einer schnelleren Konvergenz für eine Lösung des nichtlinearen Systems, wenn die klassische nichtsinguläre Annahme durch eine schwächere Fehlerschranke der eingebundenen Bedingung ersetzt wird. Auf diese Weise, lassen sich ebenfalls Probleme mit nicht isolierten Lösungen erfolgreich behandeln. Solche Probleme ergeben sich zunehmend in den praktischen, ingenieurwissenschaftlichen Anwendungen und in der mathematischen Programmierung. In dieser Arbeit verwenden wir Levenberg-Marquardt- Algorithmus für nichtlinearere Gleichungen, multikriterielle Optimierung - und nichtlineare Komplementaritätsprobleme. Wir entwickeln neue Algorithmen zur Lösung dieser Probleme und untersuchen ihre Konvergenzeigenschaften. Für ausreichend differenzierbare nichtlineare Gleichungen, analysieren und bieten wir Konvergenzergebnisse für ungenaue Levenberg-Marquardt-Algorithmen Typen. Insbesondere, bieten wir eine strenge Schranke für die maximale Höhe der Ungenauigkeit, die ausreichend ist für eine quadratische (oder eine superlineare) Rate der Konvergenz. Darüber hinaus, die entwickelte Theorie wird verwendet, um quadratische Konvergenz eines robusten projizierten Levenberg-Marquardt-Algorithmus zu zeigen. Die Verwendung von Levenberg-Marquardt-Algorithmen Typen für unbeschränkte multikriterielle Optimierungsprobleme im Detail zu untersucht. Insbesondere sind zwei globale und lokale quadratische konvergente Algorithmen für multikriterielle Optimierungsprobleme entwickelt worden. Die Annahmen wurden hergeleitet, unter welche die Fehlerschranke der eingebundenen Bedingung für ein Pareto-kritisches System erfüllt ist. Wir behandeln auch nicht differenzierbare nichtlineare Gleichungen aus Umformulierung der nichtlinearen Komplementaritätsprobleme durch NCP-Funktionen. Wir zeigen für diese Umformulierungen, dass die bestehenden differenzierbaren Bedingungen nicht zufrieden mit degenerierten Lösungen sind. Außerdem, leiten wir neue Ergebnisse für positiv homogene NCP-Funktionen. Letztere Ergebnisse werden verwendet um zu zeigen, dass geeignete schwächeren differenzierbare Bedingungen (so dass eine lokale Q-quadratische Konvergenzgeschwindigkeit ermöglichen) für bestimmte Umformulierungen gelten.
25

Solution Methods for Multi-Objective Robust Combinatorial Optimization

Thom, Lisa 19 April 2018 (has links)
No description available.
26

Modelling and multiobjective optimization for simulation of cyanobacterial metabolism

Siurana Paula, Maria 06 November 2017 (has links)
The present thesis is devoted to the development of models and algorithms to improve metabolic simulations of cyanobacterial metabolism. Cyanobacteria are photosynthetic bacteria of great biotechnological interest to the development of sustainable bio-based manufacturing processes. For this purpose, it is fundamental to understand metabolic behaviour of these organisms, and constraint-based metabolic modelling techniques offer a platform for analysis and assessment of cell's metabolic functionality. Reliable simulations are needed to enhance the applicability of the results, and this is the main goal of this thesis. This dissertation has been structured in three parts. The first part is devoted to introduce needed fundamentals of the disciplines that are combined in this work: metabolic modelling, cyanobacterial metabolism and multi-objective optimisation. In the second part the reconstruction and update of metabolic models of two cyanobacterial strains is addressed. These models are then used to perform metabolic simulations with the application of the classic Flux Balance Analysis (FBA) methodology. The studies conducted in this part are useful to illustrate the uses and applications of metabolic simulations for the analysis of living organisms. And at the same time they serve to identify important limitations of classic simulation techniques based on mono-objective linear optimisation that motivate the search of new strategies. Finally, in the third part a novel approach is defined based on the application of multi-objective optimisation procedures to metabolic modelling. Main steps in the definition of multi-objective problem and the description of an optimisation algorithm that ensure the applicability of the obtained results, as well as the multi-criteria analysis of the solutions are covered. The resulting tool allows the definition of non-linear objective functions and constraints, as well as the analysis of multiple Pareto-optimal solutions. It avoids some of the main drawbacks of classic methodologies, leading to more flexible simulations and more realistic results. Overall this thesis contributes to the advance in the study of cyanobacterial metabolism by means of definition of models and strategies that improve plasticity and predictive capacities of metabolic simulations. / La presente tesis está dedicada al desarrollo de modelos y algoritmos para mejorar las simulaciones metabólicas de cianobacterias. Las cianobacterias son bacterias fotosintéticas de gran interés biotecnológico para el desarrollo de bioprocesos productivos sostenibles. Para este propósito, es fundamental entender el comportamiento metabólico de estos organismos, y el modelado metabólico basado en restricciones ofrece una plataforma para el análisis y la evaluación de las funcionalidades metabólicas de las células. Se necesitan simulaciones fidedignas para aumentar la aplicabilidad de los resultados, y este es el objetivo principal de esta tesis. Esta disertación se ha estructurado en tres partes. La primera parte está dedicada a introducir los fundamentos necesarios de las disciplinas que se combinan en este trabajo: el modelado metabólico, el metabolismo de cianobacterias, y la optimización multiobjetivo. En la segunda parte, se encara la reconstrucción y la actualización de los modelos metabólicos de dos cepas de cianobacterias. Estos modelos se usan después para llevar a cabo simulaciones metabólicas con la aplicación de la metodología clásica Flux Balance Analysis (FBA). Los estudios realizados en esta parte son útiles para ilustrar los usos y aplicaciones de las simulaciones metabólicas para el análisis de los organismos vivos. Y al mismo tiempo sirven para identificar importantes limitaciones de las técnicas clásicas de simulación basadas en optimización lineal mono-objetivo que motivan la búsqueda de nuevas estrategias. Finalmente, en la tercera parte, se define una nueva aproximación basada en la aplicación al modelado metabólico de procedimientos de optimización multiobjetivo. Se cubren los principales pasos en la definición de un problema multiobjetivo y la descripción de un algoritmo de optimización que aseguren la aplicabilidad de los resultados obtenidos, así como el análisis multi-criterio de las soluciones. La herramienta resultante permite la definición de funciones objetivo y restricciones no lineales, así como el análisis de múltiples soluciones en el sentido de Pareto. Esta herramienta evita algunos de los principales inconvenientes de las metodologías clásicas, lo que lleva a obtener simulaciones más flexibles y resultados más realistas. En conjunto, esta tesis contribuye al avance en el estudio del metabolismo de cianobacterias por medio de la definición de modelos y estrategias que mejoran la plasticidad y las capacidades predictivas de las simulaciones metabólicas. / La present tesi està dedicada al desenvolupament de models i algorismes per a millorar les simulacions metabòliques de cianobacteris. Els cianobacteris són bacteris fotosintètics de gran interés biotecnològic per al desenvolupament de bioprocessos productius sostenibles. Per a aquest propòsit, és fonamental entendre el comportament metabòlic d'aquests organismes, i el modelatge metabòlic basat en restriccions ofereix una plataforma per a l'anàlisi i l'avaluació de les funcionalitats metabòliques de les cèl·lules. Es necessiten simulacions fidedignes per a augmentar l'aplicabilitat dels resultats, i aquest és l'objectiu principal d'aquesta tesi. Aquesta dissertació s'ha estructurat en tres parts. La primera part està dedicada a introduir els fonaments necessaris de les disciplines que es combinen en aquest treball: el modelatge metabòlic, el metabolisme de cianobacteris i l'optimització multiobjectiu. En la segona part, s'adreça la reconstrucció i l'actualització dels models metabòlics de dos soques de cianobacteris. Aquests models s'empren després per a portar a terme simulacions metabòliques amb l'aplicació de la metodologia clàssica Flux Balance Analysis (FBA). Els estudis realitzats en aquesta part són útils per a il·lustrar els usos i aplicacions de les simulacions metabòliques per a l'anàlisi dels organismes vius. I al mateix temps serveixen per a identificar importants limitacions de les tècniques clàssiques de simulació basades en optimització lineal mono-objectiu que motiven la cerca de noves estratègies. Finalment, en la tercera part, es defineix una nova aproximació basada en l'aplicació al modelatge metabòlic de procediments d'optimització multiobjectiu. Es cobreixen els principals passos en la definició d'un problema multiobjectiu i la descripció d'un algorisme d'optimització que asseguren l'aplicabilitat dels resultats obtinguts, així com l'anàlisi multi-criteri de les solucions. La ferramenta resultant permet la definició de funcions objectiu i restriccions no lineals, així com l'anàlisi de múltiples solucions òptimes en el sentit de Pareto. Aquesta ferramenta evita alguns dels principals inconvenients de les metodologies clàssiques, el que porta a obtenir simulacions més flexibles i resultats més realistes. En conjunt, aquesta tesi contribueix a l'avanç en l'estudi del metabolisme de cianobacteris per mitjà de la definició de models i estratègies que milloren la plasticitat i les capacitats predictives de les simulacions metabòliques. / Siurana Paula, M. (2017). Modelling and multiobjective optimization for simulation of cyanobacterial metabolism [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90578
27

Ordering and visualisation of many-objective populations

Walker, David J. January 2012 (has links)
In many everyday tasks it is necessary to compare the performance of the individuals in a population described by two or more criteria, for example comparing products in order to decide which is the best to purchase in terms of price and quality. Other examples are the comparison of universities, countries, the infrastructure in a telecommunications network, and the candidate solutions to a multi- or many-objective problem. In all of these cases, visualising the individuals better allows a decision maker to interpret their relative performance. This thesis explores methods for understanding and visualising multi- and many-criterion populations. Since people cannot generally comprehend more than three spatial dimensions the visualisation of many-criterion populations is a non-trivial task. We address this by generating visualisations based on the dominance relation which defines a structure in the population and we introduce two novel visualisation methods. The first method explicitly illustrates the dominance relationships between individuals as a graph in which individuals are sorted into Pareto shells, and is enhanced using many-criterion ranking methods to produce a finer ordering of individuals. We extend the power index, a method for ranking according to a single criterion, into the many-criterion domain by defining individual quality in terms of tournaments. The second visualisation method uses a new dominance-based distance in conjunction with multi-dimensional scaling, and we show that dominance can be used to identify an intuitive low-dimensional mapping of individuals, placing similar individuals close together. We demonstrate that this method can visualise a population comprising a large number of criteria. Heatmaps are another common method for presenting high-dimensional data, however they suffer from a drawback of being difficult to interpret if dissimilar individuals are placed close to each other. We apply spectral seriation to produce an ordering of individuals and criteria by which the heatmap is arranged, placing similar individuals and criteria close together. A basic version, computing similarity with the Euclidean distance, is demonstrated, before rank-based alternatives are investigated. The procedure is extended to seriate both the parameter and objective spaces of a multi-objective population in two stages. Since this process describes a trade-off, favouring the ordering of individuals in one space or the other, we demonstrate methods that enhance the visualisation by using an evolutionary optimiser to tune the orderings. One way of revealing the structure of a population is by highlighting which individuals are extreme. To this end, we provide three definitions of the “edge” of a multi-criterion mutually non-dominating population. All three of the definitions are in terms of dominance, and we show that one of them can be extended to cope with many-criterion populations. Because they can be difficult to visualise, it is often difficult for a decision maker to comprehend a population consisting of a large number of criteria. We therefore consider criterion selection methods to reduce the dimensionality with a view to preserving the structure of the population as quantified by its rank order. We investigate the efficacy of greedy, hill-climber and evolutionary algorithms and cast the dimension reduction as a multi-objective problem.
28

Um framework para análise de agrupamento baseado na combinação multi-objetivo de algoritmos de agrupamento / A framework for cluster analysis based in the multi-objective combination of clustering algorithms

Faceli, Katti 08 November 2006 (has links)
Esta Tese apresenta um framework para análise exploratória de dados via técnicas de agrupamento. O objetivo é facilitar o trabalho dos especialistas no domínio dos dados. O ponto central do framework é um algoritmo de ensemble multi-objetivo, o algoritmo MOCLE, complementado por um método para a visualização integrada de um conjunto de partições. Pela aplicação conjunta das idéias de ensemble de agrupamentos e agrupamento multi-objetivo, o MOCLE efetua atomaticamente importantes passos da análise de agrupamento: executa vários algoritmos conceitualmente diferentes com várias configurações de parâmetros, combina as partições resultantes desses algoritmos e seleciona as partições com os melhores compromissos de diferentes medidas de validação. MOCLE é uma abordagem robusta para lidar com diferentes tipos de estrutura que podem estar presentes em um conjunto de dados. Ele resulta em um conjunto conciso e estável de estruturas alternativas de alta qualidade, sem a necessidade de conhecimento prévio sobre os dados e nem conhecimento profundo em análise de agrupamento. Além disso, para facilitar a descoberta de estruturas mais complexas, o MOCLE permite a integração automática de conhecimento prévio de uma estrutura simples por meio das suas funções objetivo. Finalmente, o método de visualização proposto permite a observação simultânea de um conjunto de partições. Isso ajuda na análise dos resultados do MOCLE. / This Thesis presents a framework for exploratory data analysis via clustering techniques. The goal is to facilitate the work of the experts in the data domain. The core of the framework is a multi-objective clustering ensemble algorithm, the MOCLE algorithm, complemented by a method for integrated visualization of a set of partitions. By applying together the ideas of clustering ensemble and multi-objective clustering, MOCLE automatically performs important steps of cluster analysis: run several conceptually different clustering algorithms with various parameter configuration, combine the partitions resulting from these algorithms, and select the partitions with the best trade-offs for different validation measures. MOCLE is a robust approach to deal with different types of structures that can be present in a dataset. It results in a concise and stable set of high quality alternative structures, without the need of previous knowledge about the data or deep knowledge on cluster analysis. Furthermore, in order to facilitate the discovery of more complex structures, MOCLE allows the automatic integration of previous knowledge of a simple structure via their objective functions. Finally, the visualization method proposed allows the simultaneous observation of a set of partitions. This helps in the analysis of MOCLE results.
29

Optimal Design of District Energy Systems: a Multi-Objective Approach

Wang, Cong January 2016 (has links)
The aim of this thesis is to develop a holistic approach to the optimal design of energy systems for building clusters or districts. The emerging Albano university campus, which is planned to be a vivid example of sustainable urban development, is used as a case study through collaboration with the property owners, Akademiska Hus and Svenska Bostäder. The design addresses aspects of energy performance, environmental performance, economic performance, and exergy performance of the energy system. A multi-objective optimization approach is applied to minimize objectives such as non-renewable primary energy consumptions, the greenhouse gas emissions, the life cycle cost, and the net exergy deficit. These objectives reflect both practical requirements and research interest. The optimization results are presented in the form of Pareto fronts, through which decision-makers can understand the options and limitations more clearly and ultimately make better and more informed decisions. Sensitivity analyses show that solutions could be sensitive to certain system parameters. To overcome this, a robust design optimization method is also developed and employed to find robust optimal solutions, which are less sensitive to the variation of system parameters. The influence of different preferences for objectives on the selection of optimal solutions is examined. Energy components of the selected solutions under different preference scenarios are analyzed, which illustrates the advantages and disadvantages of certain energy conversion technologies in the pursuit of various objectives. As optimal solutions depend on the system parameters, a parametric analysis is also conducted to investigate how the composition of optimal solutions varies to the changes of certain parameters. In virtue of the Rational Exergy Management Model (REMM), the planned buildings on the Albano campus are further compared to the existing buildings on KTH campus, based on energy and exergy analysis. Four proposed alternative energy supply scenarios as well as the present case are analyzed. REMM shows that the proposed scenarios have better levels of match between supply and demand of exergy and result in lower avoidable CO2 emissions, which promise cleaner energy structures. / <p>QC 20160923</p>
30

New Multi-Objective Optimization Techniques and Their Application to Complex Chemical Engineering Problems

Vandervoort, Allan 18 February 2011 (has links)
In this study, two new Multi-Objective Optimization (MOO) techniques are developed. The two new techniques, the Objective-Based Gradient Algorithm (OBGA) and the Principal Component Grid Algorithm (PCGA), were developed with the goals of improving the accuracy and efficiency of the Pareto domain approximation relative to current MOO techniques. Both methods were compared to current MOO techniques using several test problems. It was found that both the OBGA and PCGA systematically produced a more accurate Pareto domain than current MOO techniques used for comparison, for all problems studied. The OBGA requires less computation time than the current MOO methods for relatively simple problems whereas for more complex objective functions, the computation time was larger. On the other hand, the efficiency of the PCGA was higher than the current MOO techniques for all problems tested. The new techniques were also applied to complex chemical engineering problems. The OBGA was applied to an industrial reactor producing ethylene oxide from ethylene. The optimization varied four of the reactor input parameters, and the selectivity, productivity and a safety factor related to the presence of oxygen in the reactor were maximized. From the optimization results, recommendations were made based on the ideal reactor operating conditions, and the control of key reactor parameters. The PCGA was applied to a PI controller model to develop new tuning methods based on the Pareto domain. The developed controller tuning methods were compared to several previously developed controller correlations. It was found that all previously developed controller correlations showed equal or worse performance than that based on the Pareto domain. The tuning methods were applied to a fourth order process and a process with a disturbance, and demonstrated excellent performance.

Page generated in 0.0387 seconds