• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plantar Fasciitis: Biomechanics, Atrophy and Muscle Energetics

Chang, Ryan 01 May 2010 (has links)
Purpose: The purpose of this dissertation was to determine the effects of chronic plantar fasciitis on intrinsic foot structures with respect to biomechanics, muscle atrophy and muscle energetics. This was accomplished in three parts. Methods: In Part I, a three-dimensional motion capture system with a synchronized force platform quantified multi-segment foot model kinematics and ground reaction forces associated with walking. Healthy individuals were compared to individuals with chronic plantar fasciitis feet. Typical kinematic variables, measures of coupling, phase and variability were examined in rearfoot, forefoot and hallux segments. In Part II, foot and leg magnetic resonance images were taken in subjects with unilateral plantar fasciitis so that within each subject, the healthy limb could be compared to the plantar fasciitis limb. Cross sectional areas (CSA) of the plantar intrinsic foot muscles (PIFM) and tibialis posterior muscle were computed from user-digitized images. In Part III, the metabolic demands of the PIFM were evaluated using phosphorous magnetic resonance spectroscopy at rest and after barefoot walking. Muscle pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were compared in healthy and plantar fasciitis feet. Results: In comparison to healthy feet, plantar fasciitis feet exhibited significantly (p < 0.05): 1) greater rearfoot motion, 2) greater sagittal plane forefoot motion, 3) fewer rearfoot-forefoot frontal anti-phase movements, 4) reduced rearfoot-forefoot transverse coordinative variability, 5) greater first metatarsophalangeal (FMPJ) joint dorsiflexion, 6) greater FMPJ-medial longitudinal arch (MLA) coupling variability, and 7) decreased vertical ground reaction forces at propulsion. Also, plantar fasciitis feet had 5.2% smaller PIFM CSA at the forefoot compared to contralateral healthy feet. No CSA differences were seen in the rearfoot PIFM or at the tibialis posterior muscle. The PIFM of healthy and PF feet were not significantly different in resting intracellular levels of pH or Pi/PCr, and there were no significant differences in the increase of Pi/PCr from rest to postwalking. Conclusions: In Part I, it was concluded that plantar fasciitis feet exhibit kinematics which are consistent with theoretical causation of the plantar fasciitis injury, that is, the plantar fasciitis foot exhibits excessive motion. Fewer number of anti-phase movements exhibited by plantar fasciitis feet may be an indication of pathology. The ground reaction force results suggested a compensatory pain response. In Part II, it was concluded that atrophy of the forefoot PIFM may destabilize the medial longitudinal arch and prolong the healing process. Lastly in Part III, it was concluded that resting energetics were consistent with muscle free of systemic disease or neuromuscular pathology. The presence of plantar fasciitis did not elicit systematic asymmetries in the metabolic response in comparison to healthy feet. Clinical Relevance: These kinematic results provided some evidence to support the clinical assertion that excessive motion is related to plantar fasciitis. These results also support treatment modalities which clinicians currently use to reduce rearfoot eversion, flattening of the medial longitudinal arch and dorsiflexion of the FMPJ (e.g. foot orthoses, insoles, taping, rocker soles). When treating plantar fasciitis patients, clinicians should assess for PIFM and tibialis posterior muscle atrophy and prescribe targeted exercises when appropriate.
2

DISTANCE FIELD TRANSFORM WITH AN ADAPTIVE ITERATION METHOD

Chen, Fan 22 October 2009 (has links)
No description available.
3

Kinematics and motion planning of a multi-segment wheeled robotic vehicle

Chang, Song January 1994 (has links)
No description available.
4

A Study and Implementation of On-Chip EMC Techniques

Esmaeil Zadeh, Iman January 2010 (has links)
ElectroMagnetic Interferences (EMI) are emerging problems in today's high speed circuits. There are several examples that these interferences affected the circuits and systems. This work tries to reduce the abovementioned problems in synchronous systems by modifying the clock signal such that it produces less interferers. In this thesis first EMI and its sources and related definitions are studied in Chap.1 and then a theoretical background is presented in Chap.2, finally Chap.3 and Chap.4 are dedicated to circuit implementation and simulation results, respectively. A novel multi-segment clocking scheme is presented in this thesis. An analytical methods for formal verification of advantages of this clocking method is presented in Chap.2. Chap.3 and Chap.4 also are devoted to implementation, simulation and comparison of proposed clocking method versus other methods. Since proposed clocking method does not set any constraint on timing (speed of the circuit) and does not impose very high extra power consumption on the circuit, compared to the conventional clocking, this method could be used to reduce interferences in system.
5

Multi-Segment Foot Coordination of the Treated Clubfoot

Whited, Amy 23 November 2015 (has links)
Idiopathic congenital clubfoot can be treated either operatively (comprehensive surgical release (CSR)) or conservatively (ponseti technique (PCT)). This thesis compared the mid-term outcomes after CSR and PCT treatments to a typically developing sample. A Dynamical Systems Analysis (DSA) approach and a multi-segment foot model were used to examine group differences in multi-segment foot and lower extremity kinematics, kinetics, coordination and coordination variability during walking. Ten children with clubfoot treated with PCT and seven children with clubfoot treated with CSR were evaluated retrospectively and compared to ten typically developing children. Multi-segment foot and lower extremity kinematic (240 Hz) and kinetic (1080 Hz) data were collected while participants walked barefoot at a fixed walking velocity (1.0 m/s-1 ±5%). Sagittal plane metatarsophalangeal (MTP) and three-dimensional (3D) forefoot-rearfoot, ankle, knee and hip joint range of motion (ROM) during stance and 3D ankle, knee and hip peak joint moments during push-off were calculated. A modified vector coding technique was used to quantify the multi-segment foot and lower extremity coordination and coordination variability throughout stance for forefoot-rearfoot inversion/eversion (Ff-Rf), rearfoot inversion/eversion–tibial internal/external rotation (Rf-Tib) and femur-tibia internal/external rotation (Fem-Tib) couples. Reduced MTP and forefoot-rearfoot ROM was observed in the CSR group while the PCT group demonstrated values comparable to CTR. Sagittal plane ankle ROM was similar between groups however, the CSR group demonstrated reduced frontal plane ROM compared to PCT. Peak ankle plantar flexion moment was reduced in the last 50% of stance in the clubfoot groups. The CSR group demonstrated greater knee and hip moments compared to CTR and PCT. The PCT group demonstrated lessor peak ankle eversion, knee external rotation and knee valgus moments compared to CTR. No significant differences were observed in Ff-Rf, Rf-Tib and Fem-Tib coordination and coordination variability throughout stance between the groups. PCT and CSR gait was characterized by restricted multi-segment foot motion and abnormal lower extremity joint moments; suggesting mild residual deformity. Despite residual deformity, the coordination and coordination variability results indicate that the PCT and CSR groups are not functionally limited and demonstrate similar multi-segment foot and lower extremity movement patterns as CTR.
6

Ankle and Midtarsal Joint Kinematics During Rearfoot and Non-rearfoot Strike Walking

Kuska, Elijah 06 September 2019 (has links)
No description available.
7

Form Finding And Structural Analysis Of Cables With Multiple Supports

Demir, Abdullah 01 September 2011 (has links) (PDF)
Cables are highly nonlinear structural members under transverse loading. This nonlinearity is mainly due to the close relationship between the final geometry under transverse loads and the resulting stresses in its equilibrium state rather than the material properties. In practice, the cables are usually used as isolated single-segment elements fixed at the ends. Various studies and solution procedures suggested by researchers are available in the literature for such isolated cables. However, not much work is available for continuous cables with multiple supports. In this study, a multi-segment continuous cable is defined as a cable fixed at the ends and supported by a number of stationary roller supports in between. Total cable length is assumed constant and the intermediate supports are assumed to be frictionless. Therefore, the critical issue is to find the distribution of the cable length among its segments in the final equilibrium state. Since the solution of single-segment cables is available the additional condition to be satisfied for multi-segment continuous cables with multiple supports is to have stress continuity at intermediate support locations where successive cable segments meet. A predictive/corrective iteration procedure is proposed for this purpose. The solution starts with an initially assumed distribution of total cable length among the segments and each segment is analyzed as an independent isolated single-segment cable. In general, the stress continuity between the cable segments will not be satisfied unless the assumed distribution of cable length is the correct distribution corresponding to final equilibrium state. In the subsequent iterations the segment lengths are readjusted to eliminate the unbalanced tensions at segment junctions. The iterations are continued until the stress continuity is satisfied at all junctions. Two alternative approaches are proposed for the segment length adjustments: Direct stiffness method and tension distribution method. Both techniques have been implemented in a software program for the analysis of multi-segment continuous cables and some sample problems are analyzed for verification. The results are satisfactory and compares well with those obtained by the commercial finite element program ANSYS.
8

Évaluation biomécanique de la marche pour le développement d’orthèses plantaires imprimées en 3D : application à une population ayant les pieds plats

Desmyttere, Gauthier 07 1900 (has links)
Le pied plat flexible affecte 20-25% de la population adulte. Il est caractérisé par un affaissement anormal de l’arche longitudinale médiale en charge ainsi qu’une pronation excessive du pied. Les orthèses plantaires (OPs) représentent la prise en charge conservatrice la plus fréquemment utilisée au regard de cette pathologie. Toutefois, il existe un manque de consensus quant à leur effet bénéfique, notamment à cause de la variété d’OPs (géométrie et matériaux) utilisée. Ces dernières années, le développement des techniques d’impression 3D a permis d’innover et de faciliter la production d’OPs sur-mesure. Les réalisations actuelles ne se sont cependant limitées qu’à des formes monolithiques reposant sur la forme du pied. L’objectif de cette thèse est d'approfondir les connaissances relatives à l’impact des OPs sur la biomécanique du pied plat, afin d’aider au développement et à l’évaluation d’une OP originale imprimée en 3D. À cet égard, trois objectifs spécifiques ont été définis : (1) investiguer l’effet de la forme géométrique des orthèses plantaires chez des personnes ayant des pieds plats flexibles ; (2) quantifier l’effet de la rigidité d’OPs imprimées en 3D et celle de l’addition d’éléments anti-pronateurs novateurs sur la cinématique du pied ainsi que les pressions plantaires ; (3) évaluer l’impact d’OPs sur-mesure imprimées en 3D sur la biomécanique des membres inférieurs chez des personnes ayant des pieds plats. Par la réalisation d’une revue systématique avec méta-analyse, l’effet de la forme géométrique des OPs sur la cinématique et la cinétique du membre inférieur lors de la marche chez des personnes ayant les pieds plats a pu être déterminé. Seules les études ayant clairement décrit les modifications géométriques des OPs utilisées ont été incluses. Elles ont ensuite été divisées en cinq groupes en fonction de leur forme géométrique : avec stabilisateur d’arrière-pied médial, avec stabilisateur d’avant-pied médial, avec combinaison d’un stabilisateur d’arrière-pied et d’avant-pied médial, avec stabilisateur neutre, et avec support d’arche. La revue a ainsi mis en évidence que l’utilisation de stabilisateur médiaux était la modification géométrique la plus efficace pour réduire l’éversion de l’arrière-pied et ainsi contrôler la pronation excessive. Cependant, l'hétérogénéité dans les protocoles expérimentaux contribue à la faible évidence au regard des effets des OPs sur la biomécanique de la marche chez des personnes ayant les pieds plats. Sur la base des observations tirées de notre revue de la littérature, des stabilisateurs d’arrière-pied innovants (neutre avec extension sous l’arche) ont été développés pour être utilisés avec une OP originale imprimée en 3D. Par conséquent, l’objectif de notre deuxième étude était de quantifier l’effet de ces stabilisateurs mais aussi de déterminer l’impact de la rigidité de notre OP sur la cinématique du pied et les pressions plantaires. Pour se faire, 15 hommes en bonne santé et ayant les pieds neutres (pointure 9.5-10 US) ont été recrutés afin de s’affranchir de l’interaction possible avec une pathologie. Ainsi, il a été mis en évidence qu’une augmentation de la rigidité était associée à une réduction plus importante de l’éversion à l’arrière-pied (Différence Moyenne (DM) = -0.83°). Cette dernière a d’autant plus été réduite par l’ajout de stabilisateurs (DM = -1.15° et -2.43°). Au niveau des pressions plantaires, outre le transfert de la charge vers le médio-pied induit par le port des OPs, l’augmentation de la rigidité a contribué à accentuer les pics de pression sous l’arche et l’arrière-pied (DM de +21.6% à +31.7%). Enfin, notre troisième étude avait pour but d’évaluer l’impact d’OPs personnalisées et imprimées en 3D sur la biomécanique des membres inférieurs chez des personnes ayant des pieds plats. Pour ce faire, 19 patients recrutés par l’intermédiaire de podiatres ont reçu deux paires d’OPs sur-mesure, respectivement flexible et rigide, et ont participé à une évaluation biomécanique (cinématique, cinétique, pressions plantaires). L’augmentation de la rigidité n’a eu que peu d’effets sur la cinématique et les efforts articulaires. Elle a cependant été associée à une augmentation des pressions sous l’arche (DM = +34.4% pour la pression moyenne). L’effet de notre stabilisateur a également été quantifié. Il a été associé à une réduction significative de l'éversion à l’arrière-pied (DM = -2.0°), une réduction du moment interne d'inversion à cheville (DM = -0.03 Nm/kg), et à une légère augmentation du moment interne d’abduction au genou (DM ≈ +0.04 Nm/kg). Dans l’ensemble, le présent travail de thèse a permis de mieux saisir les mécanismes d’action des OPs sur la biomécanique des personnes ayant les pieds plats, de guider le développement d’une OP imprimée en 3D et de stabilisateurs d’arrière-pied innovants, et de confirmer que l’ajout d’éléments anti-pronateurs est essentiel afin d’observer un impact bénéfique des OPs sur le contrôle de la pronation excessive. / Flatfoot has been reported to affect around 20–25% of the adult population. It is defined by an abnormally low medial longitudinal arch upon weight bearing and an excessive foot pronation. Foot orthoses (FOs) have commonly been used as a conservative treatment to manage this deformity. However, due to the variety of FOs (geometrical designs and materials) that have been used, there is still low evidence of their beneficial effect. In recent years, the advent of 3D printing techniques has facilitated the production of innovative and customized FOs. Yet, current achievements are limited to monolithic form based on the foot shape. The objective of this thesis was to deepen the knowledge relative to FOs’ impact on flatfoot biomechanics, in order to help the development and the assessment of an original 3D printed FO. Three specific objectives were defined for this purpose: (1) investigate the effect of FOs, based on their geometrical design, in individuals with flexible flatfeet; (2) asses the effect of 3D printed FOs stiffness and newly designed anti-pronator components on foot kinematics and plantar pressures; and (3) evaluate the impact of custom 3D printed FOs on lower extremity biomechanics in individuals with flatfeet. Though a systematic and meta-analysis review, the effects FOs geometrical design on lower limb kinematics and kinetics during walking in people with flatfeet has been determined. Only studies that clearly described FOs geometrical design were included. They were then categorized into five groups based on the geometrical design of FOs: with medial rearfoot posting, with medial forefoot posting, with a combination of forefoot and rearfoot posting, with neutral rearfoot posting, and with arch support. The review highlighted that medial postings are the most effective FO feature to reduce the rearfoot eversion and therefore control excessive foot pronation. However, heterogeneity between study protocols contributes to low evidence of beneficial effects of FOs on flatfeet biomechanics during walking. Based on our literature review, innovative rearfoot postings (neutral with an extension under the medial arch) have been developed for an original 3D printed FO. Hence, our second study aimed to determine the effect of these postings as well as the stiffness of our FO on foot kinematics and plantar pressures. To do so, a study involving 15 healthy men with neutral feet (shoe size 9.5-10 US) was carried out. Healthy people were recruited to avoid any interaction with a pathology. The study showed that increasing FOs stiffness was associated to a greater reduction in rearfoot eversion (Mean Difference (MD) = -0.83°). Rearfoot eversion was further decreased when adding the rearfoot postings (MD = -1.15° and -2.43°). Looking at plantar pressures, besides a shift of the loads to the midfoot region while wearing FOs, higher peak pressures under the rearfoot and the medial arch (MD from +21.6% to +31.7%) were observed when increasing the FOs stiffness. Finally, the third study aimed at evaluating the impact of custom 3D printed FOs on lower extremity biomechanics in individuals with flatfeet. Nineteen patients, recruited by experienced podiatrists, were given two pairs of custom 3D printed FOs and participated in a biomechanical analysis (kinematics, kinetics, plantar pressures). Increasing FOs stiffness had little effects on kinematics and joint moments. However, it resulted in higher plantar pressures under the arch (MD = +34.4% for mean pressures). The addition of our rearfoot posting was associated with notable effects; it significantly reduced the eversion angle (MD = -2.0°) and inversion moment at the ankle (DM = -0.03 Nm/kg), and increased slightly the knee abduction moment (MD ≈ +0.04 Nm/kg). Overall, the present thesis has provided a better understanding on how FOs impact the biomechanics of individuals with flatfeet, helped the development of a 3D printed FO as well as innovative rearfoot postings, and confirmed that anti-pronator components are essential to observe a beneficial impact of FOs on the control of excessive foot pronation.

Page generated in 0.0866 seconds